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Foreword 

 
 
As promised in the Introduction of my book ‘Electrooptical Instrumenta-
tion’, I have prepared a number of solved problems to complement the main 
text, and with pleasure I make this booklet freely available to instructors and 
students through my website http://unipv.it/donati. 
I have tried to arrange a mix of problems and questions ranging from very 
easy to rather difficult.  
My main aim has been trying to convey to the student the design attitude of 
the instrumentation engineer who is continuously confronted with a variety 
of potential solutions and trade-offs to solve the problem at hand. 
Many exercises start from numerical examples already presented in smaller 
font in the text, and develop the design in some detail, showing also the 
‘what happens if’ of several possible choices. 
I hope the material may be useful to colleagues and students. For any 
comment and suggestion, as well as to point out errors or inadequacies, 
please e-mail me at: silvano.donati@unipv.it. 
For instructors, I have prepared the PowerPoint slides of the book. They are 
a set of 400 slides and those using the book in a course can ask me the 
password to download the slides from my website. 
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Questions and Hints, Chapter 1 
 

Q1-1 Why do we speak of electro-optical instrumentation and not of laser 
instrumentation or, simply, of optics ? 
Answ.: No doubt that the laser and optics plays a central role in the 
development of the novel electro-optical instrumentation. However, 
parallel to the importance of the properties of the laser radiation, much 
credit shall be given to the new measurement methods, which are specific 
and distinctive of this new discipline, as it will be appreciated in the book.  
 
Q1-2 In the LURE experiment, how can they succeed in aiming the Apollo 
landing site even without seeing it ? 
Answ.: Following a clever proposal of Curry (see [1] of Chapt.1), they 
used a small (2” diameter) corner cube mounted internal to the telescope 
tube. When the laser pulse is fired out the telescope, the corner cube 
reflects back a small portion of the beam to the eyepiece of the telescope, 
thus identifying the aimed area with a small spot superposed to the moon 
image. The diffraction limit of the corner cube, q=1.22l/D»2 arc-sec is 
comparable to the divergence of the laser beam transmitted across the 
atmosphere. 
  
Q1-3 How can the Mars orbiting telemeter be able measuring the surface 
profile from an orbit that is elliptical (that is, not exactly circular)? 
Answ.: The raw telemetry data are transmitted to earth and processed to 
correct the height error due to the ellipticity of the orbit. 
 
Q1-4 After the He-Ne RLG was developed into a device deployed in the 
field and demonstrating the physical principle underlying the Sagnac 
measurement, what further understanding or benefit is really gained with 
the FOG gyroscope? 
Ans.: No progress in physical science is actually gained with the FOG 
respect to the RLG. Despite that, the progress in engineering is great if we 
consider that the sensor becomes much lighter, scalable in size, and 
potentially cheaper. For the same reason, efforts are pursued with the new 
MEMS-based technology. 
   
Q1-5 About experiments with interferometers, reported resolution or 
accuracy in the range of picometers or less is much smaller than the 
atomic size at the target surface. Is that correct, no issue about it ? 

Ans.: There is no physical limitation to the smallest displacement 
measurable on a surface, provided the spot size involves a number of atoms 
large enough to average the atomic-size ripple to the desired accuracy. 
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Problems, Chapter 2 

 
P2-1 How small is the beam waist of a typical L=20-cm long He-Ne laser?  

Answ.: We shall calculate the beam waist using Eq.A1-5 (Appendix A1). 
With the reasonable assumption of a plano-concave mirror cavity, with R1= 
¥ and R2=2L=40 cm, so that K=2, and m=√(K-1)= 1 we get a beam waist: 
w0L= √[(l/p)mL] = √[(0.000633/3.14) ´1´2000] = √0.402 = 0.63 mm.  
The waist is located at the plane mirror. Usually, we prefer to have the 
output mirror plane, and let the substrate be slightly wedged (in this way 
the second-surface reflection is deviated out from the useful beam.  
So, the waist is located just at the output mirror.  
 
P2-2 Using the He-Ne laser of P2-1 for alignment purposes, how small can 
the beam size be maintained on a total path length of 10 m ? Which 
telescope is needed to project it ? 
Answ.: We can magnify or de-magnify the beam waist w0L to fit properly 
into the distance 2z=10 m, as shown in figure. 
Doing so, we obtain a beam size  (Eq.2.4): 
w0= √(lz/p) = √(0.000633´10000/3.14) = √2.015 = 1.42 mm. This is the 
minimum size we can achieve at Z, the middle point of the 10-m distance. 
At the boarders of the path, the beam size is (page 14) 
w-z= w+z= √2 w0 =1.41´1.42 = 2  mm.    

  
Figure 1 
Now, let us consider the telescope we shall use. Suppose we start (see 
figure 1) with an intermediate optical element (the eyepiece of the 
telescope) placed at a distance d=100-mm from the beam waist.  
As all the distances involved are much larger than beam sizes, the 
magnifications are given by the distance ratios (see figure 2). Thus, going 
out from the laser we arrive at the eyepiece focal plane with w0F=w0L(f/d) 
and the objective conjugates this to a spot size: w0= w0F (z/F). 
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The total magnification is (see figure below): mtot=w0/w0L= (z/F)(f/d)= 
(z/d)/M =1.42/0.45= 3.15, where M=F/f is the telescope magnification. 
 

Figure 2 
By inserting in mtot=w0/w0L=(z/d)/M the ratio z/d= 5000/100=50 and w0/w0L 
=1.42/0.63=2.25 we solve for M with the result M=50/2.25=22.18. 
The telescope providing it may be implemented by an objective lens with, 
say, F=100-mm focal length and an eyepiece with f= F/M=100/22.2= 4.5 
mm focal length. Or, we may prefer use a larger focal length (and hence 
telescope tube) F=200 mm to accommodate an easier focal length of the 
eyepiece, f=200/22.92= 9 mm.  
The design of the telescope is not complete until we specify also the 
diameters needed to contain the beam being transmitted. In a Gaussian 
beam with spot size w0, the fraction of total power which is contained in a 
radius r is P(r)/Ptot =1-exp-r2/2 w0

2. Thus, to get at least the 99% of the power 
(figure 3), and avoid cutting out the tail of the beam distribution, Figure 3 

we have to work with a lens diameter D=6w. At the telescope eyepiece, the 
beam size is w0L=0.63 mm plus the negligibly small increase due to 
divergence on the d=100-mm path. So the minimum diameter of the 
eyepiece is Deyep=6´0.63= 3.8 mm.  
At the objective, the waist is magnified by a factor F/f= 22.2 and thus we 
need Dobject=3.8´22.2=85 mm, a rather bulky lens. 
 
 P2-3 Instead of the telescope used in Probl.2-2, could we use a single lens 
? What is the advantage or disadvantage of both choices? 
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Answ.:To use a single lens, we have to obtain the total magnification 
mtot=w0/w0L =3.15 in a single step. This requires a ratio z/d=3.15 or, using 
z=10m, a distance d=10/3.15= 317 cm. Clearly, this is a very unsuitable 
figure to work with. Now, the advantage of having a factor M (=22.2) of 
distance d reduction, provided by the collimating telescope is readily 
appreciated.  
 
P2-4 What about the beam size if we remove the telescope and let the beam 
propagate, using just the intrinsic collimation of the laser beam? 
Answ.: Removing the telescope and starting with the size w0L of beam at 
the laser output mirror, we get a beam size (see Eq.2.1): 
 w(z) = [w0L

2+(lz/pw0L)2 ]1/2 
Inserting z=10 m and w0L=0.63 mm in it, we get a spot size: 
w(10m) = [(0.63)2+(0.000633 ´ 104/3.14´0.63)2 ]1/2 = [0.397+(3.18)2]1/2 

As we can see from this equation, the second term coming from the 
angular divergence of the beam is dominant over the first. So we get 
w(10m)= 3.18 mm, about twice the beam size of the minimum diffraction  
case (Probl.2-2). 
Worth noting, at increasing distance z the above said trend continues, and 
it is even more disadvantageous to remove the telescope. On the other 
hand, if distance is small, for example z=1m, then we would obtain: 
w(1m) = [0.397+(0.318)2]1/2=0.71 mm,  
whereas the minimum spot size (Probl.2-2) is recalculated as 
w0= √(lz/p) = √(0.000633´1000/3.14) = √0.2015 = 0.448 mm, 
and we may wonder if the telescope is really needed, in this case which, 
however, is definitely not the best representative of the application made 
possible by the laser source. 
 
P2-5 How can I estimate the effect of air turbulence, in a real experiment 
with alignment beams propagated through the atmosphere ? Up to which 
distance L will the small spot size calculated previously still be obtained ? 

Answ.: For air turbulence, we go to Appendix A3.2, where the effect of 
scintillation and beam wandering is described. 
About scintillation, that is corruption of the original Gaussian profile of the 
beam, the equation to employ is (page 417): 
sf2≈ Cn

2 k7/6 L11/6 
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where sf2 is the phase variance induced by turbulence, k=2p/l and Cn is the 
structure constant. 
To avoid scintillation, we may settle that sf is small respect to the phase 
differences involved in keeping the Gaussian beam collimated. Like for a 
lens aberration, we may take sf=0.1 rad (≈0.01l). Inserting l=0.633 µm 
and L=10m, we get: 
Cn

2 = sf 2/ k7/6 L11/6 = 10-4 (107)-7/6 (10) -11/6= 10-14  (m –2/3) 
Comparing with the data of page 417, we can see that this is the value 
describing medium-strength turbulence.  
As the distance factor is proportional to the power 11/6≈2, increasing L by 
a factor of 3 to L=30 m means that we need a weak turbulence. Reducing it 
to 0.3 m reveals that also a strong turbulence can be tolerated. 
Beam wandering is characterized by a radius rw, of the beam centroid 
deviation. The approximate expression for it is (page 417):  
rw= w/(1 - 2.45 Cn

2 k2/3 L11/6w-11/6), 
Requiring that rw< w is like setting 2.45 Cn

2 k2/3 L11/6w-11/6<<1. With the above 
data, we get for this quantity: 
2.45 Cn

2 k2/3 L11/6w-11/6= 2.45 10-14 (107)2/3(10)11/6(1.42 10-3)-11/6= 0.013 

and wandering is negligible. But, if L is increased to 100m, the term L11/6 
will increase by a factor 77 and the calculated quantity will now approach 
unity, making rw>> w. 
 
P2-6 In the 4-quadrant pn photodiode of Fig.2-4 top the two output anodes 
do not appear electrically isolated between them, because of the finite 
resistance of the p region. Does this introduce any errors? 

Answ.: Indeed, if Rtransv is the transversal resistance found between the 
anodes, we need to terminate the photodiodes on load resistances Rl<< Rtransv 
for the error to be negligible. This is indeed provided by the low-
impedance, virtual ground of the op-amps receiving the photocurrents of 
the quadrant photodiodes.  
 
P2-7 What is the dynamic range of position acquisition of the 4-quadrant 
photodiode ? What its minimum position change that can be detected? Can 
these two quantities be changed through design in a specific given device? 

Answ.: The maximum extent of displacement, or dynamic range DR is 
given by the device diameter Dph, whereas the minimum change of position  
MCP near the zero coordinates is given by the width wdz of the gap between 
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adjacent photodiodes. Both these quantities can be changed with an optical 
system in either use of the sensor shown in Fig.2-7.  
In sensing of position-coordinates, we use a collimating telescope in front 
of the PSD, whose F/f ratio is the magnification of both DR and MCP.  
In sensing of angle-coordinates, we will change the focal length F of the 
objective to adjust qx, qy = Dph/F and the minimum MCq=wdz/F.   
 
Q2-8 Could a photoconductor structure be employed in place of the 
photodiode structure to perform like a 4-quadrant detector ?  

Answ.: Provided that the thickness to diameter ratio is very small and that 
the dark resistance of the photoconductor is high, the structure could 
indeed work as well as the photodiode, and in addition, one would get a 
photoconductive internal gain (see ‘Photodetectors’, Ch.5.6) 
 
Q2-9 Why shall we consider three types of position sensing devices, the 4-
quadrant, the PSD and the reticle-assisted? Isn’t one superior to the others 
? 

Answ.: Each device has one characteristic in which is superior to the 
others. The PSD has the best linearity, the 4-quadrant is easier to fabricate 
(no transversal resistance constraint, and even a photoconductor fits as 
well) and thus is the cheapest. The reticle-assisted position sensor can be 
implemented using a normal photodetector of circular geometry and so it 
has the widest range of l covered, from UV to IR; in addition, it provides a 
numerical output without using an A/D converter. 
 
Q2-10 What is the fastest position sensing device among the three types of 
detectors ?  

Answ.: The reticle-assisted position sensor is the slowest because it 
requires a full rotation of the reticle to adjourn the output data. Excluding 
the frequency cutoff of the electronic circuits, both the 4-quadrant and the 
PSD possess the high frequency performance typical of a junction 
photodiode, and therefore are of the same (or comparable) speed of 
response.   
 
Q2-11 In the laser level, why to use a pentaprism to deflect the beam 
instead of a plain mirror inclined at 45° ?  
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Answ.: The pentaprism arrangement deflects the beam exactly 90° off the 
incoming direction, irrespective of the incidence angle error which instead 
affects the simple mirror system.     
 
Q2-12 How collimated can the fan-beam at the output of the laser level be 
maintained at a distance z?  

Answ.: All the calculations developed in P2-1 to P2-5 apply to the case of 
the laser level. As the only difference, instead of spot size we have fan-
beam thickness in this case.       
 
Q2-13 Can a semiconductor laser diode be used in place of the He-Ne to 
build a laser level?  

Answ.: Laser diode with a wavelength appropriate for visualization of the 
beam are readily available from different vendors. They are quaternary 
hetero-structures (GaInAsP grown on InP) diodes, and may provide up to 
50 mW power at relatively low cost. Laser diodes require an anamorphic 
objective lens to circularize the beam, and this is frequently provided by 
the manufacturer. The M2 factor (page 367) of the source is however not 
very close to unity, 1.8 to 2.5 being common values. This means that the 
spot size is larger than the expected diffraction limit, and this is a first 
point of concern. 
When mounted in a mechanical fixture fastening it to the transmitting 
telescope, laser diodes perform appropriately as the optical source of the 
level. But, with ageing, the near field spot that is imaged by the objective 
lens may drift appreciably, resulting in a pointing error (typically 0.1 to 0.5 
mrad after few thousand hours of operation); this is the second point of 
concern when using laser diodes.         
 
Q2-14 Is the automatic verticality servo really superior to the manual 
setting version of the laser level ?  

Answ.: Technically it is, because with it the laser level quickly attains the 
working condition and is ready to operate. In the practical implementation, 
however, the user frequently finds the manual system more friendly. In 
addition, the manual system is simpler and cheaper, so it is often preferred.             
 
Q2-15 In the wire diameter sensor, what about the shape of the 
photodetector that is needed at the focal plane to collect the scattered field 
efficiently ? 
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Answ.: As sketched in the figure 4, if the wire is placed vertical (or parallel 
to the Y-axis), the diffraction distribution swings horizontal, or along the 
Z-axis, generating the cylindrical distribution for the diffracted 
power shown in figure.  
 To collect all the available light, we need then a rectangular-shaped 
photosensitive area for the detector PD. The height of the rectangle will be 
chosen equal to the beam width W and the thickness wdet will be chosen 
according to the desired resolution along Z or in angle, being q= wdet /F. 

 
figure 4 
Note that we don’t actually require a rectangular shaped photodetector, 
because as shown in the lower left corner of figure, a cylindrical lens will 
suitably focus the rectangular (or fan) beam into a circular (or square) one, 
allowing us to use a detector with normal circular or square sensitive area. 
 
P2-16 In the wire diameter sensor, calculate the amplitude of the signal 
which is collected by the photodetector. 

Answ.: Let us start with a power P0 supplied by the laser in the waist where 
the wire is located. Let W be the height of the waist cross section.  Then, a 
total power P0(D/W) Qext is deviated off the beam (here Qext is the extinction 
factor discussed on page 410). As D>>l, we are in the Mie scattering 
regime and it is Qext≈2. But, only half of the deviated power is the diffracted 
contribution, the other half being the power intercepted by the wire (page 
410). Therefore, at the focal plane, the diffracted power has an amplitude 
P0(D/W) and an angular distribution sinc2qD/l .  As sinc2x is normalized to 
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Y

Z

wdet

W
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unity area respect to an integration over x=q(D/l) (see A5.15’), we write 
the power distribution as the product of the two above terms and of (D/l)-1 :  
P(q) = P0 (D/W) (l/D) sinc2qD/l.  
This quantity is normalized respect integration on q. As the detector of size 
wdet presents an angle qdet= wdet/F and the current coordinate is z=qF, we 
finally get for the power collected by the photodetector: 
Pdet (z)= P(q)wdet /F= P0 (l/W)(wdet/F) sinc2 zD/Fl 
Letting numbers in this equation, for example wdet=0.1 mm, F=400 mm (as 
on page 28), W=10 mm, l=1µm, we get that at sinc2 =0.5 and with P0= 20 
mW the power reaching the detector is just Pdet=20m 10-4 2.5 10-4 0.5= 0.25 
nW, a value requiring suitable low-noise preamplification. 
 
Q2-17 In the wire diameter sensor, does the perpendicularity error affects 
the measurement?  

Answ.: If the wire is not perpendicular to the beam axis, as indicated in 
Fig.2-14, we may have two angle errors: one is the skew angle jskew the wire 
makes respect to the focal plane axis,  the other is the tilt angle jtilt the wire 
makes respect to the plane of the drawing of Fig.2-14. The first error is 
inconsequential, insofar all the wire portions remain close to the beam 
waist (where they are illuminated by a plane wavefront). The second error 
amounts to rotate the diffracted distribution of an angle jtilt along the focal 
plane. Therefore, if the photodiode are wide enough transversally to collect 
the tilted diffracted field, no error is incurred, otherwise a distortion of the 
diffracted pattern sinc x will be suffered.         
 
P2-18 Is the measurement of first two zeroes width really the best way to 
extract the diameter information from the distribution of diffracted field?  

Answ.: Actually, we should apply the theory of the optimum filter to 
ascertain which signal treatment is the best. This has been carried out in 
connection to the timing problem of the pulsed telemeter (page 55 and ff). 
Let us suppose that the detected signal E0

2 sinc2qD/l,  is scanned by a CCD 
or other moving photodiode that performs a linear Z-scan, with z=vt. As 
z=qF our signal becomes E0

2 sinc2(vt/F)D/l =f(t). 
Now, the filter we shall cascade to the photodetector has the impulse (or 
Dirac-d) response given by fopt(t)=[df(T-t)/dt]/f(T-t), where T is the time at 
which the measurement shall be performed, and the measurement consists 
in a zero crossing time-sorting. 
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If we look at the way the optimum filter fopt(t) weights the signal f(t), we 
find that the most important part of the signal is that contained in the up-
going and down-going edges of the sinc2 dependence.  
Therefore, we can conclude that examining the zero crossings of the sinc2 

signal is reasonably close to the optimum filter treatment.  
 
Q2-19 Can any further information about the wire (such as absorption 
coefficient and index of refraction of the material) be inferred from the 
measurement of the diffracted field?  

Answ.: In the basic form depicted in Fig.2-14, no other feature of the wire 
other than the diameter can be inferred, because light entering and being 
refracted by the wire falls outside the detector and is lost. However, we can 
indeed find more information in the measurement if we collect also this 
contribution, i.e. the field refracted through the wire. To do so, we need to 
sandwich the wire between two flat glass plates, with transparent glue 
filling the space in between. Then, in addition to diameter, we can measure 
also the index of refraction profile, as useful in fiberoptics characterization.    
 
Q2-20 Can the spatial frequency (or the deniers) of a fabric be measured 
with the diffracted field setup of the diameter sensor ?  

Answ.: Indeed it can be measured. In the case of a X-Y spatial periodicity 
of the fabric LX and LY, the diffracted field has a periodicity qY=l/LX along 
the qY-axis of the focal plane and a periodicity qX=l/LY along the qX-axis 
(see page 425). The peaks of the periodic pattern are distributed according 
to Eq.2.8, that is, they are the sinc2qXDY/l  and sinc2qYDX/l  distributions 
associated to the diameters DY and DX of the wires along X and Y.      
 
Q2-21 In the particle size sensor, which errors may be caused by the 
scattering regime of the particles in the optical cell, and how can they be 
taken into account or be mitigated ?  

Answ.: First of all, we shall operate in the single scattering regime along 
the cell path length. Indeed, the angular distribution for multiple scattering 
is different from that of single scattering and this shall be avoided. 
Therefore, we will keep the optical density of the cell aL much less than 1, 
typically aL=0.1-0.2 max, as a rule of thumb. Such a value corresponds to 
a modest opacity of the cell when seen against a light source, one such that 
images can be clearly seen through the cell.  Thus, it is important to check 
the concentration of particles in the cell before starting the measurement, 
and eventually adjust it.                               
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Second, we note that Eq.2.9 is valid for a scattering factor independent 
from particle diameter, or Qext=const.. Going to page 410 and Fig.A3-6, we 
can see that this is true only for D=2r>>l, that is, in the Mie region. 
For D≈ l or for D<l, we can see that the scattering coefficient oscillates 
near Qext=2 and then becomes very small respect to 1 (the Rayleigh regime). 
We can correct for this dependence by inserting the factor Qext= Qext(l/r,n) 
under the integral of Eq.2.9.     
Third, measurement of the low-angle intensity affecting the large-D part of 
the distribution is disturbed by the superposition of a strong contribution of 
the undiffracted beam at q=0. To expand the reach of the measurement 
near q≈0, a good approach is the so-called reverse-Fourier filtering  
(illustrated in Fig.2-17) that can go down to q≈1-mrad. 
 
Q2-22 In particle sizing measurements, which is the most effective method 
for extracting the desired particle distribution p(D) from the measured 
scattered intensity I(q) ?  

Answ.: The least-square-method (LSM) is the best approach as a starting 
point, because it provides reasonable results even though not the most 
accurate, necessarily. A refinement to LSM is usually provided by one of 
the several available iterative methods, but in this case we need to 
supplement the experimental data I(q) with some additional information 
about the expected distribution, so that the iteration can be stopped when 
the error respect to the true distribution reaches a minimum. 

 
P2-23 Estimate the magnitude of the signal received at the focal plane in a  
particle sizing measurement.  

Answ.: The calculation parallels that of problem P2-16. Let P0 be the input 
optical power shed on the cell, and aL=0.1 the optical thickness of the cell, 
a=cA being the concentration (cm-3) of the particles, A their effective 
cross-section, and L is the cell thickness. 
Then, P0aL is the total diffracted power, and is equal to the integral of the 
irradiance at the focal plane of the lens transforming the far-field in the 
focal-plane distribution. As an example, if we take P0= 50 mW, and 
aL=0.1, this integral is 5mW. 
Now, let us assume reasonable values for the detector size (or pixel if we 
use a CCD) and lens focal length. As a guideline, we may take a resolution 
a little bit finer than in a wire sensor (cf. problem P2-16), that is, let us 
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choose: wdet=0.04 mm and F=400 mm, so that we are sampling the q-angles 
in steps of Dq=wdet /F=0.1-mrad.  
Further, we may assume that the diameter distribution is centred around 
D=10 µm. At l=1µm, this means that the average scattering angle is 
qav= l/pD=1/3.14´10= 30 mrad or, that scattered power is spread around 
qav=30 mrad.  
Now, if we are interested to the magnitude of the received signal, to 
simplify the calculation we may assume a uniform the distribution of 
power between q =0 and qav. The total corresponding solid angle is then 
qav

2/2. Thus, the fraction of power collected by the detector [assumed a 
square of side wde] is Dq2/(qav

2/2)= (0.12/302 /2)= 2.2 10-6. Thus, the (average) 
power collected in each point of the distribution sampled by the detector is: 
P0aL ´Dq2/(qav

2/2)= 5mW´2.2 10-6= 11 nW. Again, we have to care about 
low-noise amplification of this signal with a suitable detector. 

 
 
 

Problems and Questions, Chapter 3 
 

P3-1 Calculate the accuracy of a triangulation telemeter operating at 
distance of L=1 meter, using the following: a laser source with near-field 
spot size wl =20 µm, a parallax base D=100 mm, a multi-element detector 
with pixel size (and period) p=10 µm, and an objective lens with focal 
length F=200 mm. Repeat the calculation for L= 0.3,3 and 10 meters. 
 
Answ.: To find the accuracy, we can use either Eqs.3.2 or the diagram in 
Fig.3-2. Let’s start using the equations. First, we need calculate the angle 
error Da. This quantity is determined by the largest between detector and 
source spot size, if we assume the conjugating objectives have the same 
focal length and work correctly (i.e. stay in focus). Then, the spot projected 
on the target is imaged back on the detector with the same size of the 
source, no matter how large it is on the target. As wl>p, it is wl to determine 
Da, and it is: Da = wl /F = 20µm/200mm= 100µrad. 
Now, we get from Eq.3.2’:  
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DL/L=-(L/D) Da= -(1m/0.1m) 100µrad = 1. 10-3 at L=1m.  
and multiplying by L we get DL=1 mm  (@ 1m). 
Noting the L2-dependence of DL in Eq.3.2, for the other distances we have: 
DL=100 µm  (@ 0.31m), DL=10 mm  (@ 3.1 m), and DL=100 mm  (@ 
10m). 
As a comment, we may note that performance is good up to perhaps 1m, 
but the error is not so small at 3m. 
Second, entering Da =100µrad and D=0.1-m in the diagram of Fig.3-2, we 
sort out a -45° line as the one indicated with Da/D =1mrad. This line 
supplies the relative accuracy (vertical scale) as well as the absolute 
accuracy (+45° dotted lines).  
Of course, these are the same values calculated above but, worth being 
noted, we can visualise easily and quickly the range of accuracy covered 
by a given distance span, and, in addition, we can evaluate the effect of 
small changes to the parameters of the problem. 
 
P3-2 Evaluate how long has to be the detector used in Probl.3-1 to cover 
the distance range 1 to 10 m. 

Answ The parallax angle is a=atan D/L (≈D/L for small a). As we can see 
from Fig.3-23, the detector width wCCD needed to collect the spot at distance 
L is: wCCD =F/ tana = F D/L. Of course, the required size is small (≈0) for 
large L (®¥) and thus we need to care only of the minimum distance. 
Using the data of Problem P3-1 and the minimum distance L=1-m we get: 
wCCD = F D/L= 200 (0.1/1)=20 mm.  
This is a large width for an array or multiple detector, yet an affordable 
value. But, if we had required L=0.3-m, the resulting width becomes 
prohibitively long. However, for L=0.3 m and at even shorter distance, 
accuracy is even too good and can be sacrificed - by let’s say - a factor 
10. Then, we can shorten the focal length of the objective lens by a factor 
10 and keep the detector width wCCD unaltered.   
 
P3-3 What do we need for Da  in order to keep the relative accuracy DL/L 
a constant, independent from the distance L ? 

Answ We shall increase the size of the individual element in the detector 
array, in such a way as to compensate the L-dependence. As seen from 
Eq.3-2, the relative accuracy at constant Da,  DL/L=-(L/D)Da  increases 
with L. To compensate the distance dependence we should arrange to get 
Da=W/L, where W is a constant. If we have a multiple detector with 
variable width, increasing with the radial distance R from the optical axis, 
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that is wCCD=kR  where k is a constant, then we have Da= wCCD /F=kR/F. In 
addition, being tana≈D/L=R/F, we get by substitution: Da=wCCD /F=k D/L. 
Thus, we obtain for the relative accuracy DL/L=-(L/D)Da=  k. 
 
P3-4 How many speckles are contained in the spot imaged back on the 
receiving photodetector of a triangulation telemeter ? Do they affect the 
accuracy of the instrument ?    

Answ  Let us consider the ideal case of a spot size wtar =√(lL/p) projected 
by a collimating telescope (Eq.2.4) on the target at distance L. The 
objective lens, of focal length Frec and diameter Drec, demagnifies the target 
spot size by a factor Frec/L. The result on the photodetector plane is a spot of 
size wfp=wtar Frec/L= Frec√(l/Lp) [this result is correct provided wfp is larger 
than the diffraction limit of the objective, l Frec/Drec ].   
On the focal plane, the subjective speckle (see Sect.5.1) has a transversal 
size sf(fp)=l Frec/Drec. Thus, the number of speckles inside the received spot is: 
N= [wfp/sf(fp)]2 = [Frec√(l /Lp) /lFrec/Drec]2= Drec

2/(lLp) 
With L=3m,  l=1µm, Drec=10mm, we get:  
N= 102 /[1.10-3 3000 3.14] = 11.  
Such a small number of speckles actually may affect the accuracy of the 
measurement, because the speckle intensity is a negative-exponential 
distribution (Sect.5-1). Because of that, the collection of the speckle-spots 
has a centroid (or centre of mass) shifted of a random amount respect to the 
centre of the spot wfp. The error decreases with √N, and is of the order of 
wfp/√N. As L decreases, or the spot size on the target increases, the error 
becomes negligible. 
 
P3-5 In a direct-sight triangulation telemeter (as the one depicted in Fig.3-
1) how can we incorporate an angle sensor capable of resolving less than 
the arc-minute of parallax angle a? 
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Answ To appreciate 1 minute of arc, that is 1 part in 21600 across the 
circumference of an angle measuring wheel, or even more, go down to the 
arc-second of resolution, we take advantage of the Moire’ reticles (see 
“Photodetectors”, Sect.9.3.4), which can resolve a fraction (usually 1/4) of 
pitch p or spatial period of the black-and-white marks engraved on the 
wheel outer surface. With reasonable numbers, for example p=5µm and 
R=50 mm so that the circumference is 2pR=314 mm long, we get a 
resolution of 1 part in [314/0.005].1/4= 251 200, or about 5 arc-sec. 
 
P3-6 Evaluate the background noise Pbg in a typical pulsed and sinewave  
modulated telemeter. 

Answ For a pulsed telemeter operating with a Nd-laser(l=1.06µnm) we 
have a spectral irradiance (Fig.A3-3) Es≈ 500 W/m2µm in direct sunlight at 
AM1.5 (sun elevation 42°, taken as a conservative case). Other common 
design values we may assume are: Dl=10nm (for an 80 to 90% 
transmission of the filter), NA=0.5, and dr=0.2 mm. Writing the law-of-
photography equation (in which the radiance is Rs=d (1/p)EsDl) as: 
Pbg

 = Rs AW = d(1/p)EsDl AW  
                 = d Es Dl NA2 (p dr

2/4),  
we may insert the above values, with d=1 (as the worst case for 
background) and get  
Pbg=  1. 500 .0.01.0.25. (p 0.22 10-3x2/4)=1.25. p.10-8=40 nW. 
The attenuation is Pr/Ps= d(Dr/2L)2. Working at L=1 km with Dr=100 mm 
and d=0.3 for the signal, we have Pr/Ps= 0.075 10-8, that is, for a typical 
transmitted (peak) power of Ps =0.3MW, we get a received power Pr= 0.23 
mW.  
In addition, the Iph0 noise for an APD receiver at 100 MHz is evaluated from 
Fig.3-7 as 2 pA/√Hz. Multiplying by √B/h√s, we get Pph0≈4 nW. Thus, we 
obtain the points labeled ‘pulsed’ in Fig.3-8, and we can see that it is the 
received signal shot-noise to prevail. 

For a sine-wave modulated telemeter operating at l=820 nm, we may 
have Es≈ 900 W/m2µm and Pbg approximately doubles at a value of 80nW.  
The attenuation is now Pr/Ps= Dr

2/4qs
2L2. Working at L=100 m with 

Dr=100mm and qs=1 mrad, we have Pr/Ps= 0.25. That is, for a typical 
transmitted power of Ps =0.1 mW, we get a received power Pr=25 µW. 
Again, using an APD receiver at 10 MHz, the noise spectral density is 0.2 
pA/√Hz, and multiplying by √B/h√s with a bandwidth of 100 Hz now, we 
get Pph0≈5 pW. 
Comment: in both cases, the largest noise is the shot-noise term of the 
received photons. This corresponds to have a good-design result. On the 
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contrary, if we had omitted the filter for the background or used too large a 
detector or noisy electronics, the Ibg or Iph0 values could easily be increased by 
one or two order of magnitudes and become the limiting factor of telemeter 
performance. 
 
P3-7Calculate the accuracy of the threshold-crossing timing in a pulsed 
telemeter operating with a Gaussian waveform of standard deviation  
t=5ns and with a peak received power of 1 mW. 

The Gaussian waveform for the pulse is written as:  
s(t/t)=[√2p]-1exp-(t/t)2/2,  
and a standard deviation t=5 ns means that the full-width-half-maximum of 
the pulse is 2.36´5ns=12ns. The Gaussian has a bandwidth factor equal to 
k=0.13. 
The optimum level for the threshold S0 is found from the condition (see 
also Eq.3.16’) s(t/t)/s’2(t/t)=minimum, or by inserting the Gaussian 
function as (t/t)2[√2p]-1exp-(t/t)2/2 = max.  
Differentiating with respect to t/t and equating to zero, we find (t/t)2=2 as 
the result. Accordingly, the optimum (fixed) threshold is S0 =s(√2) 
=1/[e√2p] = 0.147 and the signal slope is s’2=2S0

2=0.043. 
The threshold-dependent factor is therefore: 
 s(t/t)/s’2(t/t)=S0/s’2=0.147/0.043=3.42.  
Assuming h=0.7 and being k=0.13, the normalized time variance is 
calculated as: 
st /(t/√Nr)= [2k/h´3.42]1/2= [2´0.13/0.7´3.42]1/2 =1.12. 
The timing accuracy then obtained is st =5.7ns/√Nr, which is a value very 
close to that (5ns/√Nr) given by the default approximation of Eq.3.16. 
From the data of Fig.3-8, we may expect Pr≈1mW as the typical received 
power of the pulsed telemeter, which corresponds to a number of photons 
Nr≈Prt/hn=10-3´5.10-9/2.10-19 ≈2.5 107. The accuracy of a single-shot 
measurement is then found as: 
st

2=5.7ns/√(2.5.107) =1.1 ps,  
a very good theoretical limit of performance, even beyond the capabilities 
of electronic circuits (usually in the range 10 to 50ps).  
 
P3-8Repeat the calculation of Prob.P3-8 using a Gaussian-like waveform 
but with the leading edge faster that the trailing edge. Assume a realistic 
ratio 1.8 of the two. 

An asymmetric Gaussian, with the leading edge tle faster that the trailing 
edge tte is indeed a more realistic pulse waveform.  
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Repeating the calculation with tte/tle=1.8 and tle =5ns, we find that the 
accuracy worsens only by about 10%.   
 
Q3-9 What about the contribution of background noise to the timing 
accuracy ? 

Answ.: This contribution is given by the last factor in square brackets of 
Eq.3.16’’. To make it negligible, we need the number of photons at 
threshold to be larger than the corresponding number of background and 
circuit photons. This is the case of examples discussed in Prob.P3-6. 
In general we can say that, even when it is Nbg+ph0>S0/Nr, there is still a 1/√Nr 
dependence for the timing accuracy, which improves resolution at 
increasing number of collected photons.  
 
P3-10 Evaluate the improvement that can be obtained by the optimum filter 
processing of the photodetected signal, in the case of a Gaussian waveform 
like in Probl.P3-6. 

Answ.: Using a Gaussian pulse waveform of the type: 
s(t/t)=[√2p]-1exp-(t/t)2/2, we can evaluate the timing term, that is: 
 [∫0-∞ S’2/S dt]-1  as   ∫0-∞√(2p) t2exp–(t2/2) dt =1, or, the timing variance 
supplied by the optimum filter is  st

2
(opt)= t /√Nr(2k/h) to be compared with 

that of the best fixed threshold crossing previously calculated as  
 st

2
 = t /√Nr(2k/h) s(t/t)/s’2(t/t) = 3.42´ t /√Nr(2k/h). 

Thus, the optimum filter yields an improvement by a factor 3.42 in 
variance, or √3.42=1.85 in time rms error.    
 
Q3-11 How important is, in sine-wave modulated telemeter, to use a 
modulation index m as close as possible to the maximum value of unity ? 

Answ.: Looking at the timing accuracy (Eq.3.25)we can see that the 
modulation index enters in the dependence in product with h, the quantum 
efficiency of the detector. Therefore, decreasing m has the same effect as 
decrease the quantum efficiency.   
 
Q3-12 Can a waveform different from the sinusoid be used in the sine-
wave modulated telemeter, or a penalty is incurred when distortion of the 
sine-wave is appreciable ? 

Answ.: In principle we can use a waveform different from the sinusoid to 
modulate the power emitted by the source in a sine-wave telemeter. We 
need anyway to have a sinusoid available for the mixing operation required 
to be able recovering the relative phase. There are two problems to care 
about when using a distorted sinusoid: i) the loss of modulation index m (as 
the harmonics in the waveform decrease the amplitude of the fundamental 
component) and ii) the phase shift error amplitude of the fundamental 
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component which is incurred when even harmonics (which make the semi-
periods waveforms different) are contained in the modulating signal.     
 
Q3-13 In a pulsed telemeter, couldn’t we overcome the ambiguity problem 
by slowly increasing the repetition frequency at the switch-on of the 
instrument, so that we can determine if 1, 2 or more pulses are contained 
in the distance span under measurement ? 

Answ.: Yes, indeed this is a theoretically correct approach. However, it is 
rather complex to implement and does not bring so far, in a pulsed 
telemeter, unless we can go up to a large number n of pulses and are able to 
manage them automatically. On the other hand, the approach can work very 
well for a sine wave modulated telemeter, and indeed the frequency-sweep 
method (page 75) is the development of this idea.       
 
Q3-14 Discuss the advantage/disadvantage of using a single- versus 
double-objective optical system in the transceiver (transmitter-receiver) of 
a time-of-flight telemeter. 

Answ.: The single-objective has no parallax error nor dead zone in front of 
the instrument. This is important in short-range measurements.  
On the other hand, the double-objective has no 3-dB loss in the splitting of 
outgoing and incoming beams. In addition, it can manage easily different 
requirements of lens size and focal length in transmission and reception. 
About power backscattered from the air, the single-objective is more 
sensitive than the double-objective arrangement.         
 
P3-15 Design a simple pulsed telemeter operating with the technique of 
start-stop clock counting, using a semiconductor source for a medium-
range application (e.g., an altimeter working on a 0-2900 m span) 

Answ.: We may consider a P0=20-W peak-power laser as the optical source 
of our telemeter. Such a device is a stack of probably 20-50 individual 
diodes, mounted in an array arrangement (see Fig.A1-18 as an example). 
Stacks are available from several vendors at wavelengths ranging from 630 
to 1550 nm.  
By pulsing the stack at a t=30-ns pulse duration, we have ct/2= 3.108 m/s 
.30 10-9/2= 4.5 m, and using a clock frequency f=M/t, the length of 
resolution [cfr page 67] we obtain is L1=ct/2M=4.5/M (m).  
For example, we may assume M=4.5 and have fc= 4.5/30 ns = 150 MHz, a 
very easy-to-follow value for a counter in a cheap IC technology. In length, 
the resolution is L1=ct/2M= 1 m. 
For a 2800-m span, the repetition frequency fPRF of the pulses can be taken 
according to the safe value of LNA= 3000 m yielding fPRF < c/2L = c/2LNA= 
(3.108 m/s)/2. 3000 = 0.5.105 = 50 kHz. The corresponding repetition period is 
TR= 20 µs, and this value settles the duty factor of the laser at h = 30ns/ 
20µs =1.5.10-3, or, the mean power of the laser at PAVE= h P0 = 1.5.10-3 20 W= 
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30 mW, a Class B device, requiring safety measures when allowed to 
propagate at a distance. 
Now, we can average the time-of-flight measurement on Nm successive 
measurements, and Nm will be chosen as the largest possible allowed by the 
application requirements. Typically, a few milliseconds will be quite 
acceptable even in fast-to-respond applications, (such as for an altimeter) 
whereas in a topographic instrument we could even go up to 1-10 s. Taking 
Tm= 2 ms we get Nm = fPRF Tm= 50 kHz 2 ms= 100. Therefore, the accuracy is 
improved by a factor √ Nm = 10 compared to the value st or sL of the single 
measurement. 
If the error incurred in the measurement is just the roundoff error, then the 
accuracy is sL= L1/√6Nm =4.1 cm for the average of 100 measu-rement. 
Counting the periods of the clock at 150 MHz gives the distance of the last 
digit in units of length L1= 1m. Then, accumulating the counts (adding the 
new result to the previous content) in a 51/2-digit register for Nm=100 
measurements makes the least-significant digit represent a length L1= 1cm.  
Thus, the obtained resolution is adequate for the accuracy sL=4.1 cm found 
above [Note: resolution shall be always finer than actual accuracy, to get 
out all the information available in the measurement] 
 
P3-16 With the data of the pulsed telemeter of Probl.P3-15, calculate the 
accuracy of the timing measurement performed by threshold crossing on a 
30-ns pulse with Gaussian waveform, at the distances 100, 300, 1000 and 
3000 m. assume a diffuser with d=1 and an objective lens with diameter Dr 

= 100 mm. Assume a quantum-limited performance set by the noise of the 
received power. 

Answ.: Starting with the peak power P0=20 W and a Gaussian waveform 
with FWHM (full-width-half-maximun) of 30 ns, we obtain for the 
standardized time parameter t= FWHM/2.36= 12.7 ns. [the factor 2.36 has 
already been used at p.54 line 3 as the ratio of FWHM to standard 
deviation s).  
In the calculations that follow, we consider the quantum noise contribution 
associated to the received photons, and neglect background and electronic 
noises. 
Let us place the threshold of discrimination at the best value 0.147 for the 
Gaussian (see Problem P3-7) and thus we obtain s(t/t)/s’2(t/t)=S0/s’2= 
=0.147/0.043=3.42.  With h=0.7 for the quantum efficiency of the 
photodetector, and being k=0.13 for the Gaussian waveform, the 
normalized time variance is calculated as: 
st =(t/√Nr) [2k/h . S0/s’2]-1/2  or 
                  st /(t/√Nr) =  [2´0.13/0.7´3.42]1/2 =1.12. 
The timing accuracy is then obtained, being  t=12.7ns, as:   
st =1.12´12.7 ns /√Nr =14.2 ns /√Nr 
We shall now evaluate Nr, the number of detected photons. The power 
attenuation is (cfr Eq.3.5, 3.6a): 
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Pr/P0= d Dr 
2/4L2 

= 1. 0.12/4.1002 =  0.25 . 10-6       (@ L=100 m)  
                               so that  Pr =  0.25 .10-6. 20 W = 0.5 . 10-5 W, and in 

addition, for the other values of distances: 
= 1. 0.12/4.3002 =  0.27 . 10-7       (@ 300-m)   so that  Pr = 0.54 . 10-6 W,  
= 1. 0.12/4.10002 =  0.25 . 10-8    (@ 1000-m) so that  Pr = 0.5  . 10-7W, 
= 1. 0.12/4.30002 =  0.27 . 10-9   (@ 3000-m) so that  Pr = 0.54 . 10-8 W. 

Now, we can multiply the received power by and t divide by hn to get the 
number of received photons Nr.  
Using l=1µm so that [there are (1.24) -1=0.8 photons per eV] : 
hn=1.6.10-19/0.8= 2.10-19   

and being t=12.7 ns we get: t/hn= 12.7.10-9/2.10-19=0.635.1011  
Then, by multiplying for the above value of Pr  we obtain:   
Nr = Pr 

.t/hn = 0.5 .10-5. 0.635.1011 = 

                                                                            =  0.32 .106     (photons per pulse @ L=100 m) 
and moreover: Nr = 0.54 .10-6. 0.635.1011 = 

                                                                            =  0.34 .105    (photons per pulse @ L=300 m) 
  Nr = 0.5.10-7. 0.635.1011 =0.32 .104       (photons per pulse @ L=1000 m) 
  Nr = 0.54.10-8. 0.635.1011 =0.34 .103   (photons per pulse @ L=3000 m) 
Finally, we can compute the timing accuracy at the various distances as: 
st =14.2 ns /√Nr =14.2 /√(0.32 .106) = 25 ps          (@ L=100 m), 
       or sL = cst /2= 3.108 m/s. 25 ps/2= 3.7 mm    (@ L=100 m); 
and for the other distances: 
st =14.2 ns /√Nr =14.2 /√(0.34 .105) = 77 ps          (@ L=300 m), 
       or sL = cst /2= 3.108 m/s. 77 ps/2= 11.6 mm   (@ L=300 m); 
st =14.2 ns /√Nr =14.2 /√(0.32 .104) = 0.25 ns            (@ L=1000 m), 
       or sL = cst /2= 3.108 m/s.  0.25 ns/2 = 37 mm     (@ L=1000 m); 
st =14.2 ns /√Nr =14.2 /√(0.34 .103)= 0.77 ns            (@ L=3000 m), 
       or sL = cst /2= 3.108 m/s. 0.77 ns/2= 116 mm    (@ L=3000 m). 
As we can see from these results, the timing accuracy is good at short 
distances but worsens at the largest distance to be covered. 
Taking advantage of the √Nm improvement in accuracy which is obtained 
by averaging on Nm measurements, we can decide to use Nm=102. Doing so 
we obtain: 
stN=25 ps /√Nm = 2.5 ps           
and sLN = sLN/√Nm= 37 mm/10= 0.37 mm   (@ L=100 m); 
stN= 77 ps /√Nm = 7.7 ps           
and sLN = 11.6 mm/√Nm = 1.16 mm            (@ L=300 m); 
stN=  0.25 ns /√Nm = 25 ps           
and sLN = 37 mm/10= 3.7 mm                    (@ L=1000 m); 
stN= 0.77 ns /√Nm = 77 ps           
and sLN = 116 mm/√Nm = 11.6 mm              (@ L=3000 m). 
As we can see, to keep sLN <1-cm we could as well decrease the number of 
measurement (and shorten the measurement time) for L<3000m.  
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P3-17 Using the data of the pulsed telemeter of Probl.P3-15 and P3-16 
check whether the quantum noise contribution associated to the received 
photons is larger than the background and electronic noises, so that these 
latter can be actually neglected.   

Answ.: The received powers at the several distances considered in Probl.3-
15 are: 

Pr 
 = 0.5  . 10-5 W          (@ L=100 m) 

    = 0.54 . 10-6 W          (@ 300-m) 
      

 = 0.5   . 10-7 W,         (@ 1000-m)  
         = 0.54 . 10-8 W                   (@ 3000-m)  
The shot (or quantum) noise associated with Pr 

 is: 
pn =[2 hn Pr B]1/2= [2.2.10-19 0.5 .10-510.2.106]1/2= 4.5 nW  (at 100 m) 
where we have assumed B=k/t=0.13/12.7ns=10.2 MHz for the bandwidth 
required to accommodate the Gaussian pulse; and 
pn = [2.2.10-19 0.54 .10-610.2.106]1/2= 1.48 nW  (at 300 m) 
pn = [2.2.10-19 0.5 .10-710.2.106]1/2  =  45 pW  (at 1000 m) 
pn = [2.2.10-19 0.54 .10-810.2.106]1/2= 148 pW  (at 3000 m) 
The background noise is calculated as the shot noise associated with the 
background power Pbg collected by natural illumination of the scene (see 
Eq.3.11): 
Pbg = d Es Dl NA2 (p dr

2/4), 
where Es = scene spectral irradiance (W/m2µm), usually taken as that 
provided by the direct sunlight [worst case approximation]; Dl = spectral 
width of the interference filter placed in the receiver lens; NA = arcsin 
Dr/2F = numerical aperture of the receiver lens, and dr = diameter of the 
detector.  
For our diode laser telemeter, assuming operation at l=1µm, we may have 
(Fig.A3-3) Es≈500 W/m2µm in direct sunlight at AM1.5 (sun elevation 42°).  
Other common design values we may assume are Dl=10nm (for an 80 to 
90% transmission of the filter), NA=0.25, and dr=0.2-mm. Using d=1 in the 
above equation, we get:    
Pbg=1. 500. 10-2. 0.252 . (p.0.22 10-6/4) = 0.31.3.14.10-8=  9.8 nW. 
We need not to compute pnbg=[2 hn Pbg B]1/2 because we have already Pbg< Pr 
at the largest distance [3000 m, where Pr =0.54 . 10-8 W =54 nW] 
And, worth being noted, the above assumptions about terms contributing to 
Pbg are very conservative. 
Last, about electronic noise, from Fig.3-7 we can see that the typical 
semiconductor detector, for example an APD as usually employed in 
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pulsed telemeters, can have a (current) noise spectral density of din/df =0.05 
pA/√Hz at B= 10 MHz.  
With h=0.7 and l=1µm, so that s= he/hn= 0.7/0.8=0.87 (A/W), we can go 
from currents to powers by dividing by s.  Doing so, we get  
dpn/df=(din/df)/s=0.057 pW/√Hz. 
When multiplied by √B=√(10.106)=3.1.103, the quantity dpn/df would provide 
the total power of the noise equivalent fluctuation due to the electronic 
circuits, as: pn=0.057 pW/√Hz .3.1.103= 177 pW.  
But, we do not need the noise power, rather (page 48) the equivalent Pph0 to 
shot noise, which is given by the relation dpn/df=[2 hnPph0]1/2.  
Solving from here for the circuit-equivalent power yields: 
Pph0= [dpn/df]2/2hn = [0.057 pW/√Hz]2 /2. 2.10-19= 8.12.10-9 =8.12 nW 
Now, we have all the terms for the time accuracy (cfr Eqs.3.16)   
st =(t/√Nr) [2k/h . S0/s’2]-1/2 [1+(Pbs+Pph0)/ Pr]1/2 
With the values calculated above, the term [1+(Pbs+Pph0)/Pr]1/2 is evaluated as 
[1+(9.8+8.12)/5.4]1/2=2.08 times worse that the previously found figures, for 
L=3000m. At L=1000 and less, the term becomes ≈1.   
  
P3-18 What would be changed in the results of Probl.P3-17 if the peak 
power of the laser is decreased tenfold, to 2 W ?   

Answ.: The received powers would be scaled down of a decade (cfr 
Probl.P3-16), becoming 

Pr 
 = 0.5  . 10-6 W          (@ L=100 m) 

    = 0.54 . 10-7 W          (@ 300-m) 
      

 = 0.5   . 10-8 W,         (@ 1000-m)  
         = 0.54 . 10-9 W                   (@ 3000-m) 
The number of photons would scale down of a decade too decade (cfr 
Probl.P3-16):  
    Nr =  0.32 .105       ( @ L=100 m) 
    Nr =  0.34 .104      (@ L=300 m) 
    Nr = 0.32 .103       (@ L=1000 m) 
    Nr = 0.34 .102       (@ L=3000 m) 
Accordingly, the quantum-noise limited (signal power limited) timing 
accuracy, at the various distances for a single pulse would, worsen of √10 
to: 
st =14.2 ns /√Nr =14.2 /√(0.32 .105) = 78 ps          (@ L=100 m), 
       or sL = cst /2= 3.108 m/s. 78 ps/2= 11.7 mm  (@ L=100 m); 
st =14.2 ns /√Nr =14.2 /√(0.34 .105) = 240 ps          (@ L=300 m), 
       or sL = cst /2= 3.108 m/s. 77 ps/2= 36 mm      (@ L=300 m); 
st =14.2 ns /√Nr =14.2 /√(0.32 .104) = 0.78 ns            (@ L=1000 m), 
       or sL = cst /2= 3.108 m/s.  0.25 ns/2 = 117 mm    (@ L=1000 m); 
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st =14.2 ns /√Nr =14.2 /√(0.34 .103)= 2.4 ns             (@ L=3000 m), 
       or sL = cst /2= 3.108 m/s. 0.77 ns/2= 360 mm    (@ L=3000 m). 
Of course, background and electronic noise equivalent powers remain 
unaltered, and their sum, Pbs+Pph0= 17.9 nW is now comparable to the 
received power at L=300 m, with the result that the values of accuracy 
becomes multiplied by the following factors: 
[1+(Pbs+Pph0)/Pr]1/2=[1+17.9/500]1/2 ≈1  (@ L=100 m), 
[1+(Pbs+Pph0)/Pr]1/2=[1+17.9/54]1/2 =1.15  (@ L=100 m), 
[1+(Pbs+Pph0)/Pr]1/2=[1+17.9/5]1/2 = 2.14  (@ L=100 m), 
[1+(Pbs+Pph0)/Pr]1/2=[1+17.9/0.54]1/2 = 5.84  (@ L=100 m), 
and for N=1 measurements they are: 
sL = 11.7 mm                         (@ L=100 m); 
sL = 36 .1.15 = 41.4 mm         (@ L=300 m); 
sL = 117. 2.14 = 250 mm         (@ L=1000 m); 
sL = 360. 5.84 = 2102 mm       (@ L=3000 m). 
These figures show how the effect of background and electronic noises is 
not very strong but sizeable, except at the shortest distance. And, 
considering the performance at L=3000 m, it is now really necessary to 
improve accuracy by averaging on several successive measurements. 
  
P3-19 How would the use of a better (or worse) photodetector help (or 
penalize) the accuracy calculated in Probl.P3-16and 3-17 ?    

Answ.: With a PMT (photomultipler tube) we can have a decade less noise 
in Pph0, whereas with a simple PIN photodiode, the noise term Pph0 would 
worsen of a factor ≈5 (see Fig.3-7).  
Accordingly, we would have changes in the calculations only because of 
the term [1+(Pbs+Pph0)/Pr]1/2, and the changes would affect only  the largest 
distances where the received signal Pr becomes comparable to Pbs+Pph0. 
 
P3-20 How atmosphere attenuation affects the received signal in the 
pulsed telemeter of Probl.P3-15 through P3-17 ?  

Answ.: Referring to Fig.3.5, we can see that the attenuation on the total 
pathlength 2L is Tatm= exp (-2aL), where a,  the attenuation coefficient is: 
a = 0.1 km-1 (exceptionally clear atmosphere) 
a = 0.33 km-1 (limpid atmosphere) 
a = 0.5 km-1 (incipient haze) 
Using the value of 0.33 km-1 the total attenuation is: 

Tatm
 = 0.94        @ L=100 m, 

         = 0.82         @     300-m, 
      

      = 0.52        @    1000-m,    
            = 0.14              @    3000-m  
and, accordingly, the received power is modified, respect to the values of 
Prob.P3-16 as follows: 
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Pr 
 = 0.5 . 10-5 W           (@ L=100 m) 

    = 0.44 . 10-6 W          (@ 300-m) 
      

 = 0.26  . 10-7 W,         (@ 1000-m)  
         = 0.076 .10-8 W                  (@ 3000-m) 
This means that on the largest distance, we shall expect a loss due to 
atmospheric propagation. To mitigate this effect, we have to increase either 
the peak power of the laser, or the measurement time, or both.     
 
P3-21 What happens of the resolution of the pulsed telemeter of Problems 
P3-15 through P3-17 if we use a solid-state Q-switched laser providing 
200 kW of peak power, all the remaining parameters being the same ?  

Answ.: A 200-kW peak power in a Gaussian pulse of 12.7 ns (Prob.P3-15) 
corresponds to a pulse energy of 200k .12.7n= 2.54 mJ, a quite reasonable 
value for a small Nd-rod, pumped by a laser diodes stack.  
With  a typical repetition frequency f=10 Hz, our solid-state laser supplies 
a mean power 2.54 mJ .10 Hz= 25 mW, about the same level we have 
started with in Probl.P3-15.  
However, we have now a peak power104 times larger than the previously 
assumed for the altimeter and therefore we would get the same single-pulse 
accuracy for a distance √104 =100 times larger.  
 
P3-22 Design a sine wave modulated telemeter operating with the 
frequency-sweep method, using a semiconductor source for a medium-
range application (e.g., an altimeter working on a 0-3000 m span with a 
10-cm resolution). Evaluate the quantum-limited accuracy at 300 m and 
3000 m for a measurement time of 100 ms. Then, evaluate the actual 
accuracy when the background and electronic noises are taken into   
account. 

Answ.: We may consider a P0=1-mW CW laser diode as the source of our 
telemeter. Such a laser diode is readily available at low cost at several 
wavelength of operation, from 630 to 1550 nm. In the visible range, the 
laser is Class 2 by default, and becomes Class 1 when the beam is 
expanded or propagated on a sizeable distance (so that the eye can 
intercept only a fraction of it). 
We may take LNA=3000 m as the distance of non-ambiguity, so that we 
need a minimum frequency fm0= c/2LNA= 3.108/2.3.103= 50 kHz, a very 
reasonable value.  
As we wish a lR=10-cm resolution out of a phase measurement performed 
with a 1:100 (or 2-digit) sorting of the 2p angle, we need a maximum 
frequency fm= c/2.100.lR= 3.108/2.1=150 MHz, a very reasonable value.  
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The block scheme of the telemeter is the same as in Fig.3-22, where the 2-
digit phase sorter provides the 10-cm and 1-m digits, and a 3-decade 
counter provides the 10-m, 100-m and 1-km digits. 
About the transmitted signal, we can assume a typical modulation index 
m=0.7 for a semiconductor laser, and as in problems above, h=0.7 for the 
quantum efficiency of the photodetector. 
Now, we can repeat the calculations of Prob.P3-15 and evaluate the 
normalized time variance. Let us first assume the ideal case of negligible 
background Pbg and electronics Pph0 noises. Then: 

st /(1/2pfm√Nr)= (1/mh)1/2[1+(Pbg+Pph0)/Pr]1/2=(1/0.7. 0.7)1/2=1.4 

and, as 2pfm= 6.28. 150 MHz =109 rad/s, the timing accuracy becomes:  

st =1.4. 10-9/√Nr =1.4 ns /√Nr 

Going on to evaluate Nr, the number of detected photons, we get the 
received power Pr as: 
Pr/P0= d Dr /4L2 

= 1. 0.12/4.3002 =  0.27 . 10-7       (@ L=300 m)  
                               so that  Pr =  0.27 .10-7. 1 mW = 27  pW,     and: 
= 1. 0.12/4.30002 =  0.27 . 10-9   (@ 3000-m) so that  Pr = 0.27  pW. 

Now, we can multiply the received power by the integration time 
Tm(=100ms), and divide it by hn to get the number of received photons Nr. 
Using l=1µm so that hn=1.6.10-19.1.24= 2.10-19 ,we obtain:  
Nr = Pr 

. Tm/hn = 27 .10-12 .0.1/2.10-19 =  

                                            = 1.35.106     (photons per meas. time @ L=300 m), and 
Nr = 0.27 .10-12.0.1/2.10-19 = 1.35.104     (photons @ L=3000 m) 
Finally, we can compute the timing accuracy at the two distances as: 
st =1.4ns /√Nr =1.4n /√(1.35.106)  = 1.2 ps          (@ L=300 m), 
     or sL = cst /2= 3.108 m/s. 1.2 ps/2= 0.18 mm   (@ L=300 m); 
and for the other distance: 
st =1.4ns /√Nr =1.4 /√1.35 .104 = 120 ps            (@ L=3000 m), 
     or sL = cst /2= 3.108 m/s. 120ps/2= 18 mm   (@ L=3000 m). 
These very good values of signal quantum-limited accuracy are much 
better than the 1-cm performance we have required. However, note that 
they come out, despite the smaller power available, because of the much 
larger integration time.  
The background Pbs and electronic Pph0noise equivalent powers are now no 
more negligible. The background power increases significantly going from 
l=1µm to perhaps l=0.62-0.85µm as for a CW semiconductor laser for a 
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sine wave telemeter (the increase, see Fig.A3-3 is a factor 1.5-2.0). 
However, let’s stay with the previous value, see Probl.P3-17, of  
Pbg=  9.8 nW. 
About circuit and detector noise, let’s again assume an APD and go back to 
Fig.3-7 to evaluate the spectral density dpn/df. From the graph, we get a 
value 

dpn/df=0.3 pA/√Hz at the modulation frequency fm=150 MHz. 
Solving for Pph0 as in Probl.P3-17, we get: 
Pph0= [dpn/df]2/2hn = [0.3 pW/√Hz]2 /2. 2.10-19= 0.0225.10-5 =225 nW 
The multiplying factors of accuracy then become: 
[1+(Pbs+Pph0)/Pr]1/2=[1+235n/27p]1/2  = 93         (@ L=300 m), 
[1+(Pbs+Pph0)/Pr]1/2=[1+235/0.27p]1/2 = 930       (@ L=3000 m), 
or, the accuracy performance is dominated by the electronic noise. The 
numbers for accuracy are: 
st =1.2 ps [1+(Pbs+Pph0)/Pr]1/2=1.2ps 93 = 111ps   (@ L=300 m), 
  or sL = cst /2= 3.108 m/s. 111 ps/2= 16.6 mm     (@ L=300 m); 
st =120 ps   930= 111 ns                   (@ L=3000 m), 
  or sL = 3.108 m/s. 111ns/2= 16.6 m   (@ L=3000 m). 
The last value we have found is very clearly indicative of what happens in 
a sine modulated telemeter that uses a low power laser compared to the 
pulsed telemeter. Indeed, the resolution at short distances is still 
comparable to that of the pulsed telemeter, because what is lost in peak 
power is recovered with integration time. But, as the received signal fades 
away with increasing distance, the overwhelming effect of electronic (and 
background) noises becomes the driving term of accuracy. 
Now, we cannot improve the sL=16.6-m @L=3000 m accuracy any 
more,but using an equivalent increased power.  
 
P3-23 Recalculate the performance of the sine wave modulated telemeter 
of Prob.3-22 when the target is a corner cube.  

Answ.: With a corner cube, we get a power-equivalent gain of (Eq.3.6b): 
Gc=1/qs

2.  
We can do our best effort to collimate the outgoing beam, so that qs is as 
small as 0.1 milliradian or even less, but, on a sizeable distance of 
propagation, turbulence effect will widen the beam irrespective of the 
initial qs. Turbulence effects (see App.A3.2) are not so predictable, of 
course, but we can assume, as a rule of thumb, that in normal clear air 
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wandering and spot dancing increase aperture of the beam to an effective 
divergence  qs≈10 mr on distances in the range 0.1 to 5 km. 
Thus, let’s take qs≈10 mr as the design value of our corner-cube based sine-
wave telemeter, and the gain is Gc=1/qs

2 =1/(10-2) 2= 104.  
Then, the power collected at the two distances considered in Probl.3-22 
are: 
Pr/P0=  Gc Dr /4L2 

=0.27 . 10-7    1.104  =0.27 . 10-3    (@ L=300 m)  
                             so that  Pr =  0.27 . 10-3. 1 mW = 270  nW,     and: 
= 0.27 . 10-9   4.104  =0.27 . 10-5    (@ L=3000 m)  
                             so that  Pr =  0.27 . 10-5. 1 mW = 2.7  nW, 

After multiplying by the integration time Tm(=100ms), and dividing by hn, 
we get the number of received photons Nr as:  
Nr = Pr 

.Tm/hn = 270 .10-9 .0.1/2.10-19 =  

                                                                   = 13.5.1010    (photons @ L=300 m), and 
Nr = 2.7 .10-9.0.1/2.10-19 = 13.5.108     (photons @ L=3000 m) 
whence the timing accuracy (signal shot-noise limited) are: 
st =1.4ns /√Nr =1.4n /√(13.5.1010)  = 0.0038 ps            (@ L=300 m), 
   or sL = cst /2= 3.108 m/s. 0.0038 ps/2= 0.0006 mm   (@ L=300 m); 
and for the other distance: 
st =1.4ns /√Nr =1.4n /√13.8 .108 = 0.038  ps              (@ L=3000 m), 
     or sL = cst /2= 3.108 m/s. 0.038ps/2= 0.006 mm   (@ L=3000 m). 
Now we evaluate the multiplying term as: 
[1+(Pbs+Pph0)/Pr]1/2=[1+235n/270n]1/2 = 1.37        (@ L=300 m), 
[1+(Pbs+Pph0)/Pr]1/2=[1+235/2.7]1/2 = 9.4       (@ L=3000 m), 
whence the accuracy @ L=3000 m becomes 
st =0.038  9.4 = 0.36 ps       and sL = 0.06 mm 
As we can see, with the corner cube we obtain very good figures. These 
figures are however unrealistic in the sense that so small values surely will 
be masked by other sources of errors and noon-idealities we were allowed 
to neglect when timing accuracy is in the ns or sub-ns range. 
Instead, the interesting consequence of the above considerations is that we 
can now decrease the laser power and match all the way the desired 
accuracy. This is very desirable, to match the safety standards of outdoor 
use of the laser telemeter, without any special requirements or installation 
to protect the generic public. 
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Going through the numbers, we can see that assuming a CW laser power of 
P0=20 µW, i.e. decreased of a factor 50 respect to the starting value of 
Probl.P3-22, yet using the corner cube as the target, we have: 
Pr =  1.1 .10-3. 0.02 mW = 22  nW,  Nr = 1.2.1010, [1+(Pbs+Pph0)/Pr]1/2 =3.4  whence 
the resolution at 300m: s t =0.044 ps,  sL =0.007 mm; 
Pr =  1.1 .10-5. 0.02 mW = 0.22  nW,    Nr =1.2.108, [1+(Pbs+Pph0)/Pr]1/2=33  whence 
the resolutions at 3000m: s t =4.3 ps,  sL=0.64 mm. 
Once again, the resolution is quite satisfactory and even better than that of 
the pulsed telemeter that uses a much larger power. The big gap in powers 
is recovered through (i) the corner-cube gain; (ii) the increased integration 
(or measurement) time.    
 
P3-24 Explain why the PLL is so important in filtering the received signal 
during the frequency sweep (from the minimum fm to the maximum fM) of the 
sine-modulated telemeter. 

Answ.: In the preceding problems we have dealt with the time devoted to 
the fine (least-significant 2-digits) measurement of phase shift. Another 
time interval shall be devoted to the coarse (most-significant 3 or 4 digits) 
measurement of the zero-crossings of the phase signal, see Fig.3-22. 
We now wonder about how fluctuations may affect the detection of the 
zero crossings. 
With the aid of Figure 3, we can make the following reasoning. If spurious 
zero-crossings are to be avoided, the signal waveform (bottom trace) shall 
be monotonic. Then, the fluctuation DP of received power shall be much 
less than the variation (dP/dt)/B produced by the mean signal slope dP/dt, 
in a time interval 1/B equal to the reciprocal of the maximum frequency 
content of the fluctuation. 
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figure 3-1 

Considering a modulated signal, Pr=P0(1+ m cos2p fit), we can write this 
condition as: DP≤ P0 m2p fi /B. 
Now, the instantaneous frequency fi sweeps from 50 kHz to 150 MHz, 
whereas the maximum frequency content B of the fluctuation superposed 
on the received signal (of mean value Pr), depends on the filtering we apply 
to the received signal. If no filter is used, then B is as large as 150 MHz, or 
the maximum signal bandwidth that shall be preserved in the signal. Then 
when fi=50 kHz we get DP≤ P0m2p /5000, with a resulting demand on the 
S/N ratio. On the contrary, if we dynamically filter the signal with a PLL 
as in Fig.3-22, the bandwidth of the fluctuation is basically coincident with 
the instantaneous frequency fi, and the condition is relaxed to DP≤ P0m2p.  
 
Q3-25 Are the calculations of power, number of collected photons and 
accuracy developed in Problems P3-22 and P3-23 applicable also to a 
multi-frequency telemeter ? 

Answ.: Yes, they are. In the multi-frequency sine-modulated telemeter, 
there are three time intervals in which we perform the measurement with 
three modulation frequencies, e.g. 15 MHz, 150 kHz and 1.5 kHz. As for 
each interval the measurement is brought down to the same intermediate 
frequency by the superheterodyne demodulation, the bandwidth of filtering 
is the same and we shall spend the same time for each of the three periods.  

ΔP

ΔP

dP/dt
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P3-26 A LIDAR employs a Q-switched laser providing a 10-ns pulse width 
and the preamplifier and log-converter circuits have a passband of 10 
MHz. What is the distance resolution we can achieve? 

Answ.: The pulse width gives a distance resolution  
DL=cT/2= 3 .108 .10-8 /2=1.5 m. 
The high frequency cutoff B of the electronic circuits is important too, 
because its inverse ≈1/B is the response time on which signal is averaged, 
exactly as for the light pulse duration. More precisely, we can say that the 
equivalent of the pulse duration is best represented by 1/2B, the time of the 
Nyquist’s sampling theorem.  
The distance resolution corresponding to B is then:  
DL=c/4B= 3 .108 /4.107=7.5 m.  
This example shows that the bandwidth shall be tailored appropriately, if 
we wish it not become the factor actually limiting the resolution.   
 
P3-27 In a LIDAR, the Q-switched laser provides a pulse of E=1 mJ 
energy and t=10-ns duration. The collecting objective has a D=30-cm 
diameter. Calculate the power collected from the atmospheric backscatter 
with a=1 km-1.   

Answ.: From Eq.3.34 we get, in the case of constant attenuation a  and 
backscatter sbs coefficient: 
Pbs(t)=(E/t) sbs (p D2/4z2) (exp- az) (ct/2) 
       = (Ec/2) sbs (p D2/4z2) (exp- az) 
Note that the term pD2/4z2 resembles the attenuation of a telemeter (Eq.3.4), 
but there is an additional factor p multiplying it. This is not a mistake but 
comes from the definition of backscatter sbs coefficient, as the fractional 
power per unit solid angle (page 408). Thus, the solid angle of collection to 
multiply is pD2/4z2. 
Now we can consider the terms in the above equation: 
 i) exp- az = exp- act/2 gives the main dependence with time, a negative 
exponential with time constant T=2/ac=2/(1 km-1. 3 .105 km/s)= 6.6 µs; 
ii) pD2/4z2  is the main attenuation term, equal to 3.14. 0.32  /4. (1 .103)2= 
=0.07.10-6 at z=1km. There is a time-dependence too, but this is minor, 
compared to the negative-exponential term. 
iii) sbs term. Assuming small particles, that is the Rayleigh scattering regime 
(see Appendix A3.1), then the scattering function is isotropic and sbs=(4p)-

1a (cf. page 408). We then get for the first term, containing the pulse 
energy E: 
E(c/2) sbs = 1.10-3J .1.5 .105 km/s. (0.08).1 km-1= 12 W. 
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Additionally, because of geometrical attenuation we get, at z=1km: 
Pbs(t)= 12 W 0.07.10-6 e-az= 0.84 µW exp - t/6.6µs.   
 
P3-27 Can the power level found in Probl P3-26 be enough to perform a 
distance resolved measurement of backscattering, with a resolution of, say, 
5 meters ? 

Answ.: To get a 5-m distance resolution, we need a bandwidth B =c/4DL = 
3 .108 /4.5 = 15 MHz. At this frequency, a typical PMT (or photomultiplier) 
can have a noise spectral density of 0.006 pA/√Hz (see Fig.3-7).  
Multiplying by √B=1.22.103 and dividing by the typical PMT spectral 
sensitivity sPMT= 50mA/W yields pn=0.006.1.22.103/50.10-3=0.147 nW. 
Respect to the 0.84-µW power level of the received signal, we have a 
signal-to-noise ratio S/N=0.84µ/0.147n=5720, quite good.   
 
P3-28 What is the minimum variation of received power and hence of 
attenuation coefficient you can resolve with the S/N ratio found in the 
LIDAR of Probl P3-27 ? What is the typical concentration you can resolve 
accordingly ?  

Answ.: Assuming we get a local variation Da of the attenuation, then the 
power variation is DaP.  
We can trade the S/N ratio found in Problem P3-27 to: i) be able make a 
good measurement of Da; ii) be able to appreciate a small variation DaP of 
the received signal. Let assume, for the first point, that a S/N=5 is adequate 
for our purposes. Then we get a value 5720/5= 1140 as the allowable 
decrease of signal. This means that we are able to see a small fluctuation of 
(1140)-1=0.9.10-3 superposed on the received power and due to a small 
variation Da/a of attenuation. 
Now, we get Da= 0.9.10-3.1 km-1= 0.9.10-3 km-1.  
To determine the concentration, we should make a calibration of the 
scatterers, or of the substance we are looking for, respect to attenuation. 
But, by default, we may proceed to a rule-of-thumb calculation as follows. 
Then, from Eq.A3.2 we get:  
a = C Asc L= C Qext(pr2)L, 
where C is the volume concentration (m-3) of the scattering particles, of 
radius r, as seen along a path of length L, equal to the 5-m resolved 
pathlength in our case. 
To substantiate the evaluation let’s take r=1µm, and Qext=2 (see page 410, 
that is a l in the visible). Then we get: 
C= Da/Qext(pr2)L = 0.9.10-6 m-1/2(3.14 10-12 m2)5= 2.8 104 m-3. 
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To appreciate how small or big this number is, let’s recall that cleanliness 
classes are given as the number of particles (exceeding 10µm) per cubic 
foot. As 0.33=0.027, we have C= 2.8 104 m-30.027=756 ft-3, a fairly low value 
that becomes very good if we think that it is resolved at 1-km distance and 
on each 5-m interval. 
 

_________________________________________________ 
 
 

Problems, Chapter 4 
 
 

Q4-1 Does the conversion of field to current really correspond to perform 
a square of the electrical field, as express by Eq.4.1, and then, why there is 
no second harmonic generation?  
Answ.: The Iph=÷E÷2 law is not actually a quadratic-dependence, rather a 
modulus-square dependence, for the detected current from electric field.  
Indeed, the detected current Iph is proportional to nothing else than the 
modulus of the Poynting vector,÷E÷2/2Z0, equal to the density of power 
carried by the optical wave. Therefore, no second harmonic is generated, 
by no means. 
 
Q4-2 In the schematics of Fig.4-3, isn’t there a phase-shift between 
transmitted and reflected components introduced by the beamsplitter, that 
should be taken into account as a p-difference added to the 2k(sm-sr) 
arguments in Eq.4.3 ? 

Answ.: That’s correct, the p or half-wavelength extra phase-shift should 
theoretically be added to the difference sm-sr of path-length. But, as it is a 
constant, we can ignore it or think of it as already contained in sm-sr.   
 
Q4-3 What about the reflections from the surfaces crossed by the beams in 
the schematics of Fig.4-3, can they add to the useful beam ? Don’t they 
alter the operation respect to the case considered, of no reflections? 

Answ.: Undoubtedly, there should be no spurious reflections at all, if we 
are to get the interferometer operate correctly. To this end, the surfaces 
crossed by the beam are antireflection-coated, and there angle slightly 
tilted respect to the perpendicular to the beam, so that the residual minute 
reflections fall outside the laser as well as the detector.     
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Despite this provision, some stray light from spurious reflections can still 
reach the detector, and its effect is a cyclic error (see page 108). We can 
explain this error by letting E=E0 exp i2ksm be the useful signal, and 
Esp=√eE0 exp i2kssp the spurious reflection, where e is the fraction of power 
reflected from a point at a fixed position ssp. Now, by beating on the 
photodetector with the reference E0 exp i2ksr, we get: 
Iph= I0[1+cos 2k(sm-sr)]+√eI0[1+cos 2k(ssp-sr)] +√eI0[1+cos 2k(ssp-sm)] 
The first term is the usual signal, the second is a constant (being ssp-sr 

=constant) and the third is the cyclic error term, which has a periodicity l/2 
with the measurement path length sm, and has an amplitude √e referred to 
the l/4 peak-to-peak swing of the signal cos 2k(ssp-sm). Another 1/4 factor 
comes from the splitting of total power into the beams of the two arms, and 
in conclusion we get an error √e  l/16. 
 
P4-4 How can you implement the multiplier indicated in Fig.4-5, necessary 
to bring the count measurement to decimal ? 

Answ.: Indeed, the multiplier is not an easy task to implement, as we need 
a 7 by 7 decades decimal multiplier to apply the l/8 scale factor so as to 
bring the result to a decimal reading. 
First approach: we use SS-ICs (small scale integrated circuits), and then 
we get a decimal digit multiplier, a two-digit buffer, a decimal adder for 
each of the 7 digits, and a total adder and buffer for the result. We end up 
with perhaps 160 ICs and a PC board perhaps of 20x30 cm size. 
Second approach: it is much better to start with an FPGA (field 
programmable gate array) or the most modern version of it, the SoC 
(System on Chip). These devices are ICs (Integrated Circuits) and contain 
a large number of individual gates, mono/bi-stables, counters, adders and 
so on, which are interconnected according the desired schematic through a 
software development program.  
The result is a cheap, single chip device, whose overhead cost is the 
relatively long time spent in programming it, however. As a default 
estimate, the cost of an FPGA or SoC may be only a few percent of the 
cost of the SS-IC implementation. But, the cost of developing the program 
is 3-10 times the cost of the SS-IC product. Thus, we have a break-even 
point between the SS-IC and the FPGA/SoC at some hundreds part-counts.  
 
P4-5 Isn’t there another approach to implement the multiplication using a 
reasonably small number of SS-ICs, eventually at the expense of speed of 
output uptading? 
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Answ.: A possible implementation for the decimal-readout multiplier is 
described in Figure 4.1. Two buffer counters are introduced, one (the l/8 
buffer counter) connected to the main l/8 counter through a gate, enabled 
at the start of the conversion (start command setting the JK flip-flop). The 
buffer counter is decreased by the clock f1 pulses until it reaches the zero 
(i.e. all digits equal to zero) content. This is detected by the (6-digit) 
comparator, which then stops operation of the second counter, which is fed 
by the clock f2.   
If N1 is the content of the l/8 buffer, the time interval to reach zero is T= 
N1/f1. Then the content accumulated by the second buffer is N2 =Tf2= N1 
f2/f1. By choosing the frequency ratio f2/f1= 632811/8=0.791014, i/.e. equal 
to the l/8 unit, the content of the second buffer is brought to decimal. 
 

Figure 4.1 
  
P4-6 Calculate how parallel shall be the stroke of the measurement corner 
cube respect to axis defined by the propagation vector of the beam, to keep 
the cosine error below 1 count. 

Answ.: The actual signal we measure with the interferometer is  
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Iph= I0[1+cos 2 k. sm] = I0[1+cos (2 k sm cos Qkm)]   
As it is cos Qkm≈ 1-Qkm

2/2 for small angle, after a stroke sm we generate an 
error: 
Dsm= sm Qkm

2/2 
Letting Dsm= l/8, we get Qkm

2=2 (l/8 sm), or  Qkm= (l/4sm)1/2. 
For example, after a stroke sm=100 mm, at l=0.63 µm we need an 
alignment better than Qkm=(0.63 µm/0.1)1/2 =2.5 10-3 rad ≈ 8 arc-min.  
Note that, if we align at sight the returning beam w, let’s say within a 
fraction e of the beam itself, we get the desired alignment Qkm at a distance 
greater than z≥ e w/Qkm. For 1-mm beam radius and e =0.2, it is z≥ 0.2 . 

1mm/2.5 10-3 rad= 80 mm. 
 
Q4-7 Is the cosine error a positive or negative deviation from the true 
value ? 

Answ.: As it can be seen in Figure 4-2, the actual displacement covered by 
the corner cube is a, whereas the quantity measured by the interferometer is  
s cos Q.  Therefore, the measure has a negative deviation from the true 
value  s.   

 

Figure 4.2 
 
 
Q4-8 In Fig.4-11 of the text, we have considered a 3-sector phase shifter to 
provide 3 signals at de-phased by 120 and 240 degrees. Why can’t be the 
same thing be done with just two signals ? 

Answ.: The usual sin and cos interferometric signals have the form: 

I1= 1+cos 2ks,      I2= 1+sin 2ks. 
If the dc components were removed, the diagram would be that of Figure 
4.3, left, and the pair of co-ordinates x= cos 2ks and y= sin 2ks allow just 
one solution for 2ks (that indicated with the thick dot). 

Θ

s

s cos Θ
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In the general case, we can represent I1 and I2 on a plane as shown in 
Figure 4.3, right. Indeed, as 2ks varies between 0 and 2p, cos 2ks and sin 
2ks swing along -1 and +1 and the figure described by x= cos 2ks and y= 
sin 2ks is a circle of unit radius. Adding +1 to x and y gives the circle 
tangent to the x and y axes. 
But, for a pair of I1 and I2 values, there are two circles passing through the 
point and being tangent to the x and y axis. We could remove this 
ambiguity if we are allowed to follow for a while the evolution of the 
displacement s, so as to sort which of the two circles of figure 4.3, right we 
are running on. In general, however, we cannot grant any knowledge of the 
previous evolution of signals I1 and I2. 
Therefore, the ambiguity can be removed only with a more basic approach, 
the one using three signals (de-phased of 120°, for example). 
 

 
Figure 4.3 
 
P4-9 A two-frequency laser interferometer shall be measuring a carriage 
with a corner cube moving at a speed up to 30 cm/s. Determine the 
required bandwidth of the interferometer signal. 

Answ.:      
The speed v=d(Ds)/dt develops a frequency of counts of l/2 increment: 
fC=2v/l, 
and, for a velocity ±v, the bandwidth around the central frequency f1-f2 
doubles at: 
B=2 fC=4v/l, 
and in our case  B= 4 . 300 (mm/s) / 0.633 µm = 1.89 MHz. 
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This value can be accommodated easily upon a carrier f1-f2 =5 MHz, the 
value usually chosen in a Zeeman-stabilized He-Ne laser, as it corresponds 
to a moderate fractional bandwidth, at 5±0.95 MHz. 
 
P4-10 In Fig.4-12 (text)we see the 3-axis extension of the interferometric 
measurement. Is it really useful for part saving ? How many more axes can 
realistically be fed by a single laser source ? 

Answ.:   Of course, we save the laser, in a multi-axis arrangement like that 
shown in Fig.4-12.  
Also, if we make a measurement at a time, we can save the electronic 
circuits as well. This is not the case commonly found however, because in 
a machine tool we need all the axes of interest simultaneously. 
About the maximum number of channels we can extend, this is determined 
by the minimum signal power that is required at the detector for the 
counting circuits to function properly. With a 1-mW laser and taking the 
reasonable value of 50 µW as the minimum signal power, we get 20 
channels, theoretically.   
 
P4-11 The working principle of the planarity-measurement set-up shown in 
Fig.4-14 is very clear if we look at the angle a as the output, whereas is 
not so straightforward if we are looking to the height distribution z(x,y). 
How the data of a(x,y) are used to compute z(x,y) ? 
Answ.:   As shown in Fig.4.4 below, as the square is moved along the plane 
to be tested ¾ let’s say along the x-axis to be specific, a lowering Dz of 
the height is generated, which is related to a.  

Figure 4.4 

L

W
Wα=Δz

α

α(x)= Δz(x)/W

x (or y)

z= ∫ Δz dx
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The relationship of the total height z to the increment Dz is the integral, of 
course. 
Thus, as also shown in Figure 4.4, the actual height profile or distribution 
as a function of the coordinate, z=z(x) is found as z(x)= ò Dz(x) dx = W 
ò a(x) dx. In practice, if we perform the measurement in steps of 
displacements of W, moving the mobile (the right hand side) square along 
x by W, 2W, 3W, ... and we get a measurement of a1, a2, a3, ... counts of 
l/8= 0.08 µm at each position, then the profile z1, z2, z3, ... is given by a1, 
a1+a2, a1+a2+a3, ... (in l/8 units). 
 
 Q4-12 Can we measure the angles (e.g., roll, pitch, and yaw) of a turret 
carrying the tools of the machine-tool as in Fig.4-13 so that control in it 
six axes?    

Answ.:   Of course, each angle can be measured by the double-square 
configuration of Fig.4-14. At large angles, this configuration yields the 
measurement of Df= 2kL sin a, where a is the (roll, pitch or yaw) angle of 
the turret respect to the fixed frame of the machine-tool. The maximum 
dynamic range for a is determined by the angular aperture of the corner-
cubes and by the distance between the squares (it can go up to 45 deg). 
 

P4-13 An interferometer operates on a diffuser target like indicated in 
Fig.4-16. The laser power is Pl =1 mW and we use a lens with F=100 mm 
and D =30 mm, that focalizes the laser beam (with wl= 0.5 mm) on the 
target in a focal spot of wtar=100 µm.  What is the collected power Pph, on 
the 1-mm dia. photodiode ? Does is depend on wtar ? What is the dynamic 
range of the measurement? What is the loss of sensitivity performance 
respect to operation on a corner-cube ?   

Answ.:   Using the result on page 111, we get 
Pph = Pl (wl /F)2 = l mW.(0.5/100)2 = 25 nW as the collected power.  
This power does not depend on wtar .  
The dynamic range DR is the depth of focus (p.112) l/pNA2, where 
NA=0.5/100, or: DR=0.6µm (100/0.5) 2= 24 mm.  
About sensitivity performances, a reduction of the available power from 1-
mW to 25- nW (or 4.6 decade) brings about a worsening of 1/2(4.6)=2.3 
decades in the noise-equivalent-displacement, as shown in Fig.4-18. 
For example, if we need a 10-kHz bandwidth of measurement, instead of 
the 0.4 pm (with the corner cube) we may resolve only 0.1-nm. 
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P4-14 How the quantum efficiency h of the detector impacts the shot-
noise-limited NED? How important is it, compared to visibility and 
responsivity ?  

Answ.: As I0=sP0=  eh/hn P0 and the shot noise of the photons gives a 
power fluctuation pn= [2 hn  P0B]1/2, the argument leading to Eqs.4.15 and 
4.16 can be repeated with the following result: 
NED = (l/2p) [2 eB/ sP0]1/2/RV 
                    = (l/2p) [2 hnB/ P0]1/2/RV√h = (l/2p)  [S/N] P /RV√h 
or, the general expression involving l/2p,  S/N and RV is still valid if we 
take the S/N ratio as that of the available power, but as a final step we have 
to divide it by √h. Thus, the NED is proportional to detector quantum 
efficiency at power -1/2 whereas R and V affects linearly the NED. 
 
P4-15 What is the frequency stability Dn of the laser that we need in an 
interferometer to be able resolving a NED of, say: i) 1-nm on a Ds =1-m 
distance (arm) imbalance, ii) 1µm on a Ds =10-m distance imbalance ?  

Answ.:  We need (Eq.4.21) Dn=n NED/Ds. As n= 375 THz @ l=800nm, 
we get: 
 Dn= 375 THz 10-9m /1m = .375 MHz for case i), and 
Dn = 375 THz 10-6m /10m = 37.5 MHz for case ii). 
These figures basically represent the laser linewidth we need to get. 
As a comment, a He-Ne frequency stabilized laser can easily match both 
figures, whereas using a semiconductor it is likely that we are able to 
match the specification of case ii) but not that of case i). 

P4-16 Are the spatial-coherence and polarization-state effects the only 
effects related to beam parameters or other possible errors can arise, for 
example in wave-front radius mismatch ? 

Answ.: If two beams are recombined with curved wavefront, the radii of 
curvature shall be the same, otherwise the factor µsp, as given by Eq.4.22, 
will be less than one.  

P4-17 If the incoming wavefront is spherical and the detector surface is 
plane, isn’t there an error because of the varying phase of the field along 
the photodetector surface ?  

Answ.: No, what matters is the phase difference, so the radius matching 
condition is applicable to the two waves being recombined, not to a wave 
being compared to the receiving surface. 
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P4-18 How large is the error of the interferometric measurement which is 
caused by an error in wavelength and associated variation of the index of 
refraction of the air ? Evaluate it for a single mode-hop of a 850-nm 
semiconductor laser. 

Answ.: Using Eq.4.25, we get after differentiation:  
D(nair-1)= -4.608 Dl(µm)/l2

(µm)  -0.122 Dl(µm)/l3
(µm) (ppm) 

and letting for case i) l=0.85 µm, Dl=0.3 nm (from the diagram of Fig.A1-
13), we get:  
D(nair-1)= -4.608 0.3 10-3/0.852 -0.122 0.3 10-3/0.853= - 1.68 10-3  (ppm) 
or, the error is quite negligible.  On the other hand, the Dl/l  error is not 
negligible at all, being equal to 0.3 nm/850 nm= 0.35 10-3 = 350 ppm. 
 
P4-19 Evaluate the thermodynamic rms fluctuation arising in a fiber of 
length L=1000 m in a B=10 kHz bandwidth. 

 Answ.: Using Eq.4.28 of the text (page 119), which is rewritten here with 
the correct multiplicative factor as: 
NEDth= fth/k= 0.37 10-5 [kT2LB/k]1/2 
where kBT2=1.2 10-18 J°.C, and being k=0.014 W.cm–1°C–1 for silica, the 
material of which fiber is made. Therefore we find:  
NEDth= 0.37 10-5. [1.2 10-18 ´1000 ´104/0.014] 1/2 

                               = 0.37 10-5. 2.90 10-5 (cm) = 1.07 10-10  cm  
We can also go back to the noise-equivalent-phase fth = k.NED  to better 
understand how this value shall be considered.  Assuming l=850 nm, so 
that k=2p/l= 6.28/0.85 10-4= 7.39 104, we get: 
fth(noise)= 7.39. 104 .1.07.10-10= 7.93. 10-6 rad. 
Going back to the diagram of Fig.4-18 with these data, we can see that the 
thermodynamic fluctuation of 7.93 µrad is equivalent, at B=10kHz, to the 
shot noise associated with a detected power of ≈1mW. Thus, we shall 
conclude that, in a sensor with a long fiber, the thermodynamic noise can 
indeed become the limiting factor. 
 
P4-20 Evaluate the Brownian rms velocity fluctuation affecting a 1 
milligram mass.   

Answ.: Letting T=300 K in Eq.4.29, and being k= 1.38.10-23J/K for the 
Boltzmann constant, we get for a 1-mg mass:  
áv2ñ= kT/m = 4.10-21/10-3=2.10-18, or sv=√áv2ñ=1.4.10-9 m/s. 
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This is a value well in the reach of a typical interferometer (it corresponds 
to s=1nm and f=1Hz in the diagram of Fig.4-17). 

 
P4-21 Evaluate the Brownian rms angular velocity fluctuation affecting a 
disk of 10 milligram mass and a 1-mm radius.     
Answ.: For a 10-mg mass and 1-mm radius, we get an inertia momentum I= 
(1/2)mr2=5.10-3.10-6 =5.10-9,  
and thus we get from Eq.4.30:  
sW=√áW2ñ= kT/I  =√(4.10-21.0.2.109)=0.9.10-6r/s = 0.18 deg/h,  
again a value within the readout sensitivity of a gyroscope (see Ch.7). 

   
Q4-22 Why there is a speckle-related error when the measurement is 
performed on a diffusing surface ? How large is it ?.     
Answ.: The error is determined by the speckle-pattern phase statistics, 
which amounts to an interferometric phase  error. The error is different for 
a transversal and a longitudinal displacement, or a lateral shift of the 
diffuser target. As we have seen from Eqs.4-29 to 31 the amount of the 
error is primarily determined by the ratio of the displacement Ds we are 
considering to a characteristic length of the speckle field, e.g., the so-called 
speckle size. The multiplication factor of this ratio is not far from unity and 
its actual value is determined by the statistics discussed in Ch. 5. 
  
P4-23 Calculate the minimum displacement that can realistically be 
measured with the internal configuration of interferometry working with a 
L=20-cm He-Ne tube.     
Answ.: The minimum displacement Ds we can detect in an observation 
time T is that generating at least 1 period of the beating waveform received 
at the photodetector, or, a frequency Df =1/T. 
As it is Df=Rf Ds, with the responsivity Rf=c/lL typically as large as Rf= 
2.4 MHz/nm for l=633 nm and L=200 mm, taking T=1 s we get Ds=[2.4 
MHz/nm]-1 = 2.4 fm. Of course, for the measurement to be useful, we shall 
have an adequate S/N ratio, as determined by Fig.4-18. 

Q4-24 The scale factor of the internal configuration of interferometry is 
c/Ll . Is L in it the distance (of the rear mirror) to measurement-arm 
mirror or reference-arm mirror ? 
Answ.: It is the distance of the rear mirror to the measurement-arm mirror 
if this mirror is the movable one. Should the reference-arm mirror be 
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moved also, then the associated Dsref measurement would have a scale 
factor c/Lrefl.  

P4-25 A self-mixing interferometer uses a 20-cm He-Ne laser with output 
mirror reflectivity of 99% and a round-trip gain 2g0L=0.02. Evaluate the 
AM modulation index and the frequency deviation of the FM signal.  
Assume a spot size w=0.2 mm and allow for a target either diffusive or 
reflective, placed at a distance s=50 cm.  

Answ.: Working at s=500 mm distance on a diffuser target, we have a 
superposition loss Ah=w/s= 0.2/500, whereas for a retroreflector the loss 
would be Ah=L/2s=0.2 [because A=1 and h=[(w/w0)2+(w0/w) 2]-1/2≈ w/w0 

≈(l/pw0
2)2s/w0≈ L/2s]. 

Then we have for the diffuser at 500-mm distance:    
mA=Aht1

2/2g0≈(0.2/500)0.01/0.00025.40=4.10-5, and this would then show 
up as a very minute ripple superposed to the average power emitted by the 
laser. On the other hand, with the retroreflector, it would be:  
mA≈0.2.0.01/0.00025. 40=0.2, a nicely large amplitude.  
Correspondingly, the frequency deviation D/2p in the two cases is:  
D/2p=ac/2L=750 MHz(0.2/500)0.01/6.28=500 Hz  (diffuser), and 
D/2p=750MHz.0.2.0.01/6.28 =250kHz (retroreflector).    

P4-26 Repeat the calculation of Probl.4-25 for the AM modulation of a 
semiconductor laser, with output mirror reflectivity of 30% and a round-
trip gain 2g0L=3. Assume that an output objective lens makes the beam 
circular, into a spot size w=0.25 mm. Allow for a target either diffusive or 
reflective, placed at a distance s=50 cm, and calculate the factor C. 
 
Answ.: Working at s=500 mm distance on a diffuser target, we have a 
superposition loss Ah=w/s=0.25/500. 
For a retroreflector, the loss is Ah=[(w’/w0)2+(w0/w’)2]-1/2, where w0 =0.25 
mm is the initial spot size, and w’ is the spot size of the beam after having 
travelled a distance 2s. Hence, w’=[w0

2+(l2s/pw0)2]1/2=[0.252 +(0.85.10-

3.1000/3.14. 0.25)2]1/2= [0.252+1.082]1/2=1.11 and we get:  
Ah=0.225 for the retroreflector. Then we have at 500-mm distance:    
mA=Aht1

2/2Lg0≈(0.25/500)0.3 /3 =0.5.10-4 for the diffuser, and: 
mA≈0.225.0.3/3 =0.0225 for the retroreflector. Thus, both values are larger 
(but not very much larger) than those of the He-Ne laser.  
In addition, assuming for the diode laser a typical cavity length L= 200 µm 
(=0.02 cm), nl=3.5 and and a=6, we can calculate the factor C (see on page 
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141, the equation following 4.48, and correct accordingly the miswriting of 
Eq.4.35 on page 127): 
C= Ah s (1+a2)1/2 /nl L = 0.5.10-3.50.371/2 /3.5.0.02= 
                                                 = 2.17 for the diffusing target, and 
C = 0.225. 50. 371/2/ 3.5 0.02 = 977 for the retroreflector.  
In the first case, the signal already exhibits switching (see Fig.4.28, 
drawing on the second line from the top) and is adequate to allow a l/2-
fringe counting mode. The second case shows that, using a retro-reflector, 
the laser is driven into very high C’s at even a moderate (s=50-cm) 
distance. Thus, the laser will undergo the coherence collapse regime unless 
we add an optical attenuator along the propagation path so that C is 
tailored as desired. 
If we repeat the calculation for the He-Ne laser, in which nl ≈1 and a≈0, 
using the data of Probl.4-25, we get:    
C= Ah s (1+a2)1/2 /nl L = 0.4.10-5.50.1 /1.20= 10-5 for the diffusing target, and 
C = 2.10-3. 50. 1/ 1.20= 5.10-3  for the retroreflector. In both cases, and in 
general very frequently with He-Ne lasers, we are in the weak-injection 
regime. 
 
P4-27 Calculate the speed of response of the AM/FM modulations for an 
interferometer that uses the He-Ne laser with the data of Probl.4-25, or the 
diode laser with the data of Probl.4-26. Assume s=50 cm. 
  
Answ.: Using the He-Ne laser, we have for the time constant t of the cold 
cavity: t-1=(1-r) c/2L = 0.01. 750 MHz=7.5 MHz. The gain per pass is G= 
2g0L=0.02, and hence the bandwidth is B= t-1/2g0L =7.5/0.02= 225 MHz. 
In addition, there is a 50 cm.2/30cm/ns=3.3-ns delay in the response. 
For the semiconductor laser, we get t-1= 0.6 . 200 GHz = 120 GHz, and as 
2g0L=3, we get B= t-1/2g0L =120/3= 40 GHz. [Of course, it’s very difficult 
to test this large bandwidth with a direct measurement]. In addition, we 
again have the 3.3-ns delay at s=50 cm. 
 
P4-28 How can we calculate the minimum-displacement or NED 
performance of the self-mixing interferometers considered in Problems 4-
25 to 4-27 ?    
 
Answ.: The NED is determined by the smallest of the AM and FM signals. 
As the AM is usually smaller than the FM signal (see page 130), we are 
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left with a measurement performed with an average power P0 (or 
photodetected current I0=sP0), on which the useful signal is a cosine with 
relative amplitude mA=Aht1

2/2Lg0.  Thus, we have simply to consider the 
equivalent power mAP0 as the value to enter in the diagram of Fig.4-18 and 
evaluate the NED.  
 
P4-29 Evaluate accuracy and precision of self-mixing interferometers that 
use as a source: (i) a frequency-stabilized He-Ne laser; (ii) a monomode 
He-Ne laser; (iii)  a thermal stabilized DFB diode laser; (iv) a Fabry-
Perot thermal stabilized laser diode; (v) a normal Fabry-Perot laser diode.  

Answ.: First, we shall note that accuracy is about the uncertainty of the 
measurement, whereas precision is refereed to the ‘true value’ of the 
measurement and involves the possibility of performing a calibration of the 
instrument. Of course, to achieve a precision of say 10-6 or the sixth 
decimal place, we need the accuracy be at least of the same amount, so in 
the following we refer to accuracy only. 
In the self-mixing interferometers, there is no difference respect to making 
a normal phase f=2ks measurement based on the wavelength l=2p/k as the 
yardstick. So, the accuracy and precision of s are the same of l or of 
frequency n of the source. Thus, left aside the index of refraction 
correction, the relative uncertainty of s, Ds/s is the same of the relative 
uncertainty of frequency, Dn/n. Then we have: 
(i) in a typical frequency-stabilized He-Ne laser, Dn is dependent on the 
reference chosen and on the control loop gain (App.A1.2). With a simple 
Zeeman or two-mode mechanism, and a piezo actuation, we easily achieve 
Dn≈200 kHz on short term, and proabbly Dn ≈2 MHz on long term. As 
l=633 nm is equivalent to n=500 THZ, we get a relative accuracy Dn/n≈5 
M/ 500 T=10-8. Thus, in principle, we can attain the 8-th decimal place in 
the measurement with freq-stab He-Ne. 
(ii) in a monomode He-Ne laser, mode-wandering under the atomic 
linewidth Dnat  limits Dn to Dn=Dnat≈ 1.5 GHz, whence Dn/n≈1.5G/500T 
=0.3 10-5. Thus, we can get 5,5 digits with unstabilized He-Ne’s (the 1/2 
digit is for the factor 0.3). 
(iii) in a thermal stabilized DFB diode laser, the linewidth is probably a 
narrow Dncav≈1-5 MHz, but we get a much larger wandering of the 
resonance because of temperature and current-dependence. A typical active 
thermostat can reduce ambient-related perturbances to, say, ±0.1 °C level, 
where as a good current stabilizer will reduce current drift around the 
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working current (20-70 mA) to, say, DI=1-µA.  As the thermal drift of a 
diode laser (either DFB, DBR or Fabry-Perot) is an=dn/dT≈3GHz/°C and 
the current drift is aI=dn/dI≈2 GHz/mA (see page 385) summing up the 
contributions we get: 
Dn=  al DT+ aI DI= 3 GHz . 0.1+ 2 GHz. 0.001= 302 MHz. 
Accordingly, the resolution at l=800 nm (or 400 THz) becomes:  
Dn/n≈0.3G/400T= 0.75 10-6. Thus, we can get 6,2 digits with a well-
stabilized DFB of DBR laser. 
(iv) In a Fabry-Perot thermal stabilized laser diode, the coefficients are the 
same as in (ii), but the Fabry-Perot has additionally the very unpleasant 
feature of mode-hopping (see Fig.A1-13) This prevents us from assuming 
Dn=302 MHz as the total linewidth drift. Rather, we shall take 
conservatively Dn as that of a single mode hop, or Dn= Dnhop≈200 GHz.  
Accordingly, the resolution at l=800 nm becomes:  
Dn/n≈200G/400T= 0.5 10-3. Thus, we get only 3,7 digits with a Fabry-Perot 
thermal stabilized laser. 
10-5. Thus, we can get 5,5 digits with unstabilized He-Ne’s (the 1/2 digit is 
for the factor 0.3). 
(iii) in a thermal stabilized DFB diode laser, the linewidth is probably a 
narrow Dncav≈1-5 MHz, but we get a much larger wandering of the 
resonance because of temperature and current-dependence. A typical active 
thermostat can reduce ambient-related perturbances to, say, ±0.1 °C level, 
where as a good current stabilizer will reduce current drift around the 
working current (20-70 mA) to, say, DI=1-µA.  As the thermal drift of a 
diode laser (either DFB, DBR or Fabry-Perot) is an=dn/dT≈3GHz/°C and 
the current drift is aI=dn/dI≈2 GHz/mA (see page 385) summing up the 
contributions we get: 
Dn=  al DT+ aI DI= 3 GHz . 0.1+ 2 GHz. 0.001= 302 MHz. 
Accordingly, the resolution at l=800 nm (or 400 THz) becomes:  
Dn/n≈0.3G/400T= 0.75 10-6. Thus, we can get 6,2 digits with a well-
stabilized DFB of DBR laser. 
(iv) In a Fabry-Perot thermal stabilized laser diode, the coefficients are the 
same as in (ii), but the Fabry-Perot has additionally the very unpleasant 
feature of mode-hopping (see Fig.A1-13) This prevents us from assuming 
Dn=302 MHz as the total linewidth drift. Rather, we shall take 
conservatively Dn as that of a single mode hop, or Dn= Dnhop≈200 GHz.  
Accordingly, the resolution at l=800 nm becomes:  
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Dn/n≈200G/400T= 0.5 10-3. Thus, we get only 3,7 digits with a Fabry-Perot 
thermal stabilized laser. 
(v) In a normal Fabry-Perot l diode, we get several mode-hops in the 
normal working conditions, and therefore we may have 5-10 times the 
Dn/n calculated at point (iv), so resolution is very poor, just about 3 digits. 
P4-30 Derive the loop gain and the transfer function of the short-distance 
vibrometer shown in Fig.4-34. Find the filter response to low-frequency 
(<100 Hz) components (representative of microphonics) 

Answ.: We may represent the feedback loop of the half-fringe-stabilized 
vibrometer (Fig.4-34 of the text) as in Figure 4-5. 
In this schematic, the displacement signal Dsmeas is accompanied by the 
disturbance from the ambient Dsamb, and the interferometer is a block with 
transfer function k (=2p/l); the resulting phase F=k Ds is read by the 
photodiode as a signal I0F (for small F) and the front-end preamplifier 
gives a voltage output signal Vout= RI. Finally, the low-pass filter has a 
frequency response F(w), let us take it simply as  F(w)=1/√[1+(f/f1)2], and it 
feeds the main amplifier with the voltage gain A. \ 
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Last, the actuator gives a response Dspiezo=kV, where k (µm/Volt) is the 
conversion factor of the piezo. 
Now, we can calculate the transfer function between input (the 
displacement) and output (the front-end output) as: 
Vout/Dsmeas= G0/(1+hG0), where, from feedback theory, G0 is the direct transfer 
gain, and hG0 is the loop gain. From these definitions we can write by 
inspection of Figure 4-5: 
G0= k I0 R,     
hG0 = k I0 R F(w) A k 
When the filter is is cut-off, F=0 for f>>f1, the loop gain hG0 is zero and we 
simply get the transfer function G0 of the normal interferometer, or 
Vout/Dsmeas= k I0 R.  With the typical values I0 = 0.3 mA (for a 1-mW total 
optical power) and R=100 kW, we get as an example: 
Vout/Dsmeas= 2p 0.3m 100k /l= 200 Volt/wavelength. 
On the other hand, when the filter fully effective, F=1 for f<<f1, then the 
loop gain is hG0 = k I0 R A k and the transfer ratio becomes: 
Vout/Dsmeas= k I0 R/(1+ kI0 R Ak) 
If we neglect the unity respect to kI0 R Ak, we get  
Vout/Dsmeas= 1/Ak 
and, at any rate, the transfer function is reduced respect to the high-
frequency normal value, just of the loop gain kI0 R Ak. 
If we let k= 1 wavelength/ 1000 V and A= 5000, then the loop gain is: 
hG0 = k I0 R Ak = 200 Volt/wavelength ´ 1wavelength/ 1000 V ´ 5000  
                        = 1000 
As a in conclusion, the ambient induced disturbances Dsamb are reduced by a 
factor 1000 when they fall in the passband (f<<f1) of the filter. 
We can add some further insight in the mechanism of the feedback effect, 
by expliciting the single-pole expression for F(w)=1/(1+jf/f1) in the transfer 
ratio: 
Vout/Dsmeas= kI0 R/(1+ kI0 RF(w)Ak)  
            = [kI0 R/(1+ kI0 RAk)] /[1/kI0 RFAk +1/(1+jf/f1)]  
            = [kI0 R/(1+ kI0 RAk)] (1+jf/f1)/[1/kI0 RFAk +jf/f1kI0 RFAk +1] 
            ≈ GF (1+jf/f1)/[1+jf/f1hG0] 
where GF is  the feedback gain.  
From this expression we can see that the frequency response is composed 
as follows: we start from the dc with GF, then, from the frequency cutoff f1, 
there is an increase of the response with frequency (the term jf/f1), until we 
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reach the frequency f1hG0, at which the gain has become GFf1hG0/f1= GFkI0 

RFAk≈ kI0 R, the normal value of the interferometer.    
 

P4-31 For the short-distance vibrometer shown in Fig.4-34, evaluate the 
NED when using a 1-mW laser in a 10kHz bandwidth. 

Answ.: To evaluate the NED, let’s start considering that half the optical 
power P0 supplied by the laser reaches the target.  
In the rediffusion process, only a fraction h of it is sent back into a single 
spatial mode for coherent superposition at the photodetector.  
Letting wl for the spot size and being q=l/pwl the diffraction angle, the 
power fraction collected back by the photodiode in a single mode is: 
h = (solid angle of diffraction)/(Lambert’s semispace solid angle), or 
h = pq2/p=(l/pwl)2. With typical values for a He-Ne laser, P0=1mW, 
l=0.633 µm and wl =0.5 mm, we have: 
h=(0.633µm /3.14. 0.5 mm) 2=1.6 10-7. The useful power is then:  
hP0 /2=(1mW /2). 1.6 10-7≈ 0.8 10-10 W 
From the diagram of Fig.4-18, we can find the minimum measurable 
amplitude of vibration as:  
NED=0.06pm @ B=1MHz and P1W=1W. As the dependence of NED is 
from √B and 1/√P, we shall multiply 0.06pm by √1M/10k, and divide it by 
√(0.8 10-10) thus obtaining: 
NED=0.06pm 10-2 1.11 105 = 66 pm. 
 
P4-32 In the vibrometer of Probl.4-31, what would be the NED if we had 
used a self-mixing interferometer?. 

 

Answ.: In the self-mixing interferometer we would not have the reference 
beam, that is, all of the 1-mW power is used in the measurement arm.  
Therefore, the power impinging on the output mirror in the back travel 
from the target is: hP0 =(1mW ). 1.6 10-7≈ 1.6 10-10 W  
In addition, we have to pass through the mirror, and this yields an 
attenuation equal to t1 (typ. 0.01 in a He-Ne laser).  
We may be attempted, as in Probl.4-25, to take account of the gain factor 
2g0L=0.02. But, this is only an extrinsic gain of the modulation signal, not a 
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true increase of optical power. Therefore, the incoming equivalent power 
is: 
hP0t1 =1.6.10-10.0.01 = 1.6.10-12 W, and we end up with the result: 
NED= 66 pm √(0.8.10-10/1.6.10-12) = 930 pm, 
a value not so different from that of the external configuration of interfe-
rometry. 
 
P4-33 Suppose you remove the low-pass filter in the vibrometer of Fig.4-34 
(and Probl.4-30). What happens of the output signal voltage ? How can we 
recover the interefrometric signal ? What is its dynamic range ? 

 

Answ.: By removing the low-pass filter we make the feedback loop 
effective at all frequencies, or, it is F=1 in the expressions of Probl.4-30 
and: 
Vout/Dsmeas= k I0 R/(1+ kI0 R Ak) 
The output voltage is decreased, from its natural value kI0R, by a factor 
equal to the loop gain hG0 = kI0 RAk≈ 1000 in the example of Probl.4-30. 
So, we will not see anything (but a dc value) looking at the front-end 
output. This is because we are tracking the displacement Ds of the target 
with an equal displacement applied to the piezo. The voltage to the piezo 
now carries the signal Ds (plus the disturbance Dsamb) and its value is: 
Vpiezo/Dsmeas= k I0 RA/(1+ kI0 R Ak)  
                ≈1/k  (=1000V per wavelength, in the example of Probl.4-30) 
This value is the low-amplitude scale factor, and we may remark that it is 
accurate and stable as the piezo-transfer factor k is. 
In addition, if we go to amplitudes larger than the wavelength, Ds>l, we do 
not develop the cos 2kDs nonlinearity like in a plain interferometer. Indeed, 
as the signal decreases a little also the feedback from the piezo will 
decrease, cancelling the nonlinearity.  
This result is well-known in feedback theory, and amounts to say that 
nonlinearity as well as the dynamic range are increased by a factor equal to 
the loop gain hG0 (=kI0 RAk≈1000 in our example).  
Thus, we can reach perhaps 1000l≈630µm of dynamic range in the linear 
regime for Ds, by this servo loop. 
The only drawback is that we now shall filter out the Dsamb disturbance a-
posteriori from the total signal Ds instead of relying on the servo loop to do 
so as in the scheme of Fig.4-34. 
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P4-34 The half-fringe servo loop is incorporated in a self-mixing 
interferometer operating at s=10 cm from a diffuser target. Calculate the 
necessary current swing that shall be impressed to the diode drive. 
 
Answ.: The phase Df produced by a Dl variation is: 
Df=2s D(2p/l) = 2(2p/l2)sDl 
and, as a good design rule, we may require that the phase swing to be 
controlled is a full 2p angle, so that 
2p = 2(2p/l2)sDl,  and solving for Dl  we get: 
Dl =  l2/2s   
Using l =0.85µm and s=10 cm we get:  
Dl=(0.852 /20 104) = 3.6 10-6  µ m = 0.0036 nm. 
The current swing required is found from the relation  
Dl = aI DI, where aI (p.387) is typically ≈0.004 nm/mA.  
Now, by substituting the previous expressions we then get: 
DI =Dl/aI =0.0036nm /0.004nm/mA=0.85mA, a quite reasonable value.  
With the servo loop, also the self-mixing interferometer can operate as a 
large dynamic-range vibrometer. The factor hG0 is now given (by inspection 
of Fig.4-36) by: 
hG0 = kI0 R A /Rc aI 2(2p/l2)s/2k= I0 (R/Rc) AaI (2ps/l2). 
as  aI (2ps/l2)=(Dl/DI) (2ps/l2)= p/DI, we also get: 
hG0 = (pI0/DI) (R/Rc) A 
Thus, if I0≈1mA and R≈Rc, the loop gain is primarily given by the 
amplification A of the block following the front-end (and we can do 
A≈1000 for this block to duplicate the results of previous problems). 
P4-35Can the feedback loop based on the current control be implemented 
in a normal Fabry-Perot laser, without detrimental effects from mode-
hopping ? What happens if a mode-hop occurs ?. 

Answ.: At a DI =0.85mA, and corresponding Dl=0.0036nm, we are far 
from the mode hop spacing, which is about ≈0.2 nm, see Fig.A1-13.  
At any rate, should a mode-hop occur, the working point settled by the 
loop control is momentarily lost and the output signal exhibits a spike, 
losing the correct waveform. But, after getting a new wavelength, the 
system reacts and converges into a new equilibrium point with the signal 
returning to the correct value. 
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Q4-36 Is the 1/s dependence of the vibrometer scale-factor shown in Fig.4-
37 also applicable to a normal (non servo loop) vibromter ? Clarify the 
point.    

Answ.: The scale factor DIph/Ds=1/aI is applicable to the servo-loop vibro-
meter, either in the external or self-mix configuration. In addition, the 1/s-
dependence is that of the field-attenuation, in contrast to the 1/s2 
dependence of the intensity or power-attenuation, for a signal propagated 
to a distance s and back. 
Irrespective from the 1/s or 1/s2 dependence, when we go in the fringe-
count mode (as in Fig.4-39 and 4-40) it does not matter any more if the 
signal is eventually decreasing with 1/s or 1/s2, because we look at the 
periods contained in the signal, and therefore the scale factor is 
independent from distance. 
This apparent oddity can be easily justified by the following statements: 
- in the servo-loop vibrometer we perform an amplitude measurement, 
whereas  
- with the fringe counting vibrometer we perform a phase measurement. 
 
P4-37 How can you tell the amplitude of the square-wave driving signal 
exciting the MEMS in Fig.4-39 and 4-40 from the waveform of the 
interferometric signal (Fig.4-40) ?  

Answ.: In the cos 2kA0cosw0t of Fig.4-40 we can start counting fringes 
from the rise front (at about 45 on the x-axis) and stop at the fall front (at 
bout 85). So, we can count Nper=51/2 (±0.1) periods, and therefore (assuming 
l=0.85 µm) 
A0= Nper(l/2) = 5.5(±0.1) 0.425 = 2.337 (±0.042) µm. 
Of course, if we are aiming at our target from an oblique direction, at an 
angle q respect to the perpendicular to the target surface, then it would be 
A0= Nper(l/2 cos q).   
 
P4-38 An absolute distance self-mixing interferometer is aimed at a target 
at s=1m. Consider a current sweep of DI=0.85mA as in P4-34 and of 10 
times as much. How large is the yardstick syst of the measurement ? How 
many periods  Ncount are developed aiming at s=1m ?  

Answ.: As with DI=Dl/aI =0.0036nm /0.004nm/mA=0.85mA we were 
planning to get a 2p phase in s=10cm, thus, even with no calculation we 
can write that: 
 syst = l2/2Dl = 10cm,   and therefore Ncount= s/syst= 10  
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This working condition requires a small current swing, DI=0.85mA. Going 
to ten times as much, at DI=8.5mA, we would get:  
syst = l2/2Dl = 1 cm,   and therefore Ncount= s/syst= 100. 
In a single measurement, the resolution is syst = 1 cm, and the error is s= 
syst/√12 =2.88 mm. 
 
P4-39 How can the resolution and the error of the absolute distance self-
mixing interferometer be improved ?  
Answ.: At  first sight, we may think that increasing the current-dependence 
of wavelength, the coefficient aI , is the best to do. Actually, we can 
improve resolution and error also by: 
- increasing the number of measurements, so to scale errors by √N, 
- increasing the current swing DI. 
The current swing is limited by mode hopping (in Fabry-Perot lasers) and 
by single- to multi-mode transition (VCSELs). Increasing coefficient aI 

may result in a two-pole response, one fast due to carrier index-of-
refraction dependence, the other slow because due to thermal effects. 
Increasing DI too much also introduces a non-linearity of the scale factor, 
in the sense that syst=l2/2Dl then changes with I [as it is l=l(I)]. 
 
P4-40 In the angle-measurement scheme of Fig.4-48, how can we change 
(for example, increase) the dynamic range of the measurement?  
Answ.: We can use a collimating telescope to increase/decrease the spot 
size w0  and the divergence q=l/pw0  accordingly, and recall that the 
dynamic range of angle measurement is ≈1-2 q  whereas the resolution in a 
(nearly constant) fraction of the resolution. 
 
P4-41Calculate the maximum value of measurable attenuation a when the 
weak-echo injection-detector is used (Sect.4.7.3).  

Answ.: We may take the S/N=1 condition to settle the maximum value amax 

of attenuation. 
The signal is given (see Eq.4.39) by: 
S = I0 k amax 
and the noise is given by the shot-noise associated with the detected 
current I0, that is 
N = (2e I0 B)1/2 
Therefore we get, for S=N: 
I0 k amax = (2e I0 B)1/2 or 
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amax =(2eB/I0 )1/2/k 
Using I0 = 1 mA and B= 100 Hz we get: 
amax =(3.2 10 -19 102/10-3)/k= 1.8/k 10 -10 
Now, depending on the factor k=s/nL, and assuming nL=3.5´200 µm=0.7 
mm, we may have these representative values: 
for and s=1.8´70=126 mm: k=180  and   amax=10 -8; 

for s=1.8´700=1260 mm: k=1800  and    amax=10 -7 
 
 

Problems and Questions, Chapter 5 

P5-1 Calculate the transversal and longitudinal sizes of the speckle field 
generated at distance of 50-cm, 2-m and 10-m by a white diffuser with spot 
size D=5 mm, using a laser wavelength l=633 nm. How the longitudinal 
size changes if, at 2-m distance, we move transversally of 2 meter? 

Answ.: We use Eqs.5.1 and, for the speckle at z=50 cm, on axis, we find: 
st = lz/D = 0.633 ´10-3 500/5= 0.063 mm 
sl= l(2z/D)2 = 0.063mm ´ 2 500/5 = 12.7 mm  
If the laser is powerful enough to render the speckles visible (or, we use an 
image intensifier), we would barely see them as very dots in the laser spot, 
whereas transversally the speckles are already long enough to be resolved. 
At z=2 m the sizes become increased to: 
st @2-m = 0.063 mm ´ (2/0.5) = 0.25 mm 
sl @2-m = 12.7 mm ´ (2/0.5) 2 = 203.6 mm 
and at z=10 we get: 
st @10-m = 0.063 mm ´ (10/0.5) = 1.26 mm 
sl @10-m = 12.7 mm ´ (10/0.5) 2 = 5.08 m 
here, as is comparable to z, we are approaching the so called ‘last speckle’. 
About the off-axis observation at z=2m, with a D=2m, we get q= atan D/z = 
45° and therefore the longitudinal speckle size are: 
sl@2-m,q=45° = sl /cos q= 203.6 mm/0.707 = 288 mm. 

P5-2 Calculate the distance Z of the ‘last speckle’ with the data of Probl.5-
1. Comment on the relationship of Z to the Fresnel distance. 

Answ. We let sl=z in the expression of the longitudinal size sl= l(2z/D)2 and 
solve for z, obtaining: Z= D2/4l = 52 /4 0.633 ´10-3 = 9.87 m 
In classical optics, the quantity Z=D2/4l is known as the Fresnel distance, 
separating the Fraunhofer (or far-field) region of diffraction from the 
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Fresnel near field region. In connection with the speckle property, the last 
speckle indicates that, from z=Z onward, the result of diffraction from the 
aperture D doesn’t change any more or, the speckle is single. . 

P5-3 Calculate the subjective transversal size of the speckle seen by the 
eye (Deye=4 mm) when looking at a laser spot of diameter D= of 2 mm 
projected on a white screen at a distance z=1m (assume l=633 nm).  

Answ. The transversal size on the speckle on the eye is st = lz/D and there 
are N2=(Deye/st) 2 of them in the eye collecting surface. On the focal plane of 
the eye (the retina), the image has a size (diameter) DFeye/z and dividing by 
N we get the speckle size on the retina as (DFeye/z)/(Deye/st)= 
=lFeye/Deye= st (retina), the same as if the eye were the new source of speckle. 
Projecting back to the object plane, we magnify these speckle (see also 
Fig.5-3) by a factor z/Feye, thus obtaining st (sub)=l z/ Deye as the subjective 
speckle dimensions. Inserting the numbers we get:  
st = lz/D = 0.633 ´10-3 1000/2= 0.316 mm 
st (retina)=lFeye/Deye = 0.633 ´10-3 14/4= 1.4µm (having taken Feye=14 mm) 
st (sub)=l z/Deye = 0.633 ´10-3 1000/4 = 0.158 mm 
This figure tells us that the speckle will be well visible, as a random dotting 
on the average brilliance of the laser spot projected on the diffuser screen. 

P5-4 How many speckles are contained in the spot imaged back on the 
photodetector of a triangulation telemeter? What about their effect on the 
accuracy of the measurement ?    

Answ.: To simplify, let us assume that the collimating telescope projects a 
diffraction-limited spot size wtar =√(lL/p) on the target at distance L.  
The objective lens in front of the photodetector demagnifies the target spot 
size by a factor Frec/L (Frec=focal length, Drec=diameter). The result is a spot of 
size wfp=wtar Frec/L= Frec√(l/Lp) on the detector plane [this result is correct 
provided wfp >>lFrec/Drec, the diffraction limit of the objective].   
On the focal plane, the subjective speckle has a transversal size  
sf(fp)=l Frec/Drec.  
Thus, the number of speckles inside the received spot is: 
N= [wfp/sf(fp)]2 = [Frec√(l /Lp) /lFrec/Drec]2= Drec

2/(lLp) 
With L=3 m,  l=0.633µm, Drec=10mm, we get:  
N= 100  /[0.633 .10-3 3000 3.14] = 16.7.  
As the number of speckles is small, the effect on the accuracy of the 
measurement should be considered. As the speckle intensity is a negative-
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exponential distribution, the collection of the speckle-spots has a median 
shifted of a random amount respect to the spot centre wfp. The error 
decreases with √N, and is of the order of wfp/√N.  
As L decreases, or the spot size on the target increase, the error becomes 
negligible. 

P5-5 How frequent are the bright speckles in the speckle field? Calculate 
the probability of finding the intensity 2.5 times the average. Are dark 
speckles less frequent that bright ones ?  

Answ.: Using Eq.5.8, the probability of having I≥2.5áIñ is found as:  
P{I≥2.5áIñ} = exp-I/áIñ½5áIñ  = e-2.5=0.082.  
We get as much as 8.2% chance of having a speckle brighter than the 
average. 
On the other end, we may assess quantitatively a dark speckle as one with 
≤25% average intensity. In this case the probability is: 
P{I≤0.25áIñ} =1- exp-I/áIñ½0.25áIñ =1- e-0.25=0.22 
and we can say that oddly, or, at least on the subjective judgement of the 
eye observing the speckle distribution, dark speckles are more probable 
(22%) than bright ones (8.2%). 

QP5-6 Doesn’t the bright speckle violate the principle of invariance of the 
brilliance in those points where a bright speckle is found ?  

Answ.: No, because the principle is applicable to the total value of radiant 
power P or to the average value of power density I.  
If we want to connect power density of the field to the black-body 
temperature of a collector, then we write sT4=I orT=(I/s)1/4. A speckle 
brighter than average then means a higher than average (absolute) 
temperature. This sounds awkward and dangerous, but actually is no 
wonder: a thermal reservoir at average absolute temperature T will anyway 
have a fluctuation, and the speckle-related temperature fluctuation is just a 
manifestation of this circumstance. 

P5-7 Consider a point, in a bright speckle, having 2.5 times the average 
intensity. What is the average intensity of a nearby point, correlated to the 
starting one with m=0.8 ? What is the phase variance ?  

Answ.: Using the diagrams of Fig.5-7 and 5-8 (or, Eqs.5.27) we find: 
I2½I1 = 1.96 (2s2)  and s2

2½I1 =[0.13+1.28 0.36 1.96](2s2)= 1.03(2s2) 
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The point close (or internal) to an intense-speckle has a relatively smaller 
variance than the normal field, s2

2½I1/[I2½I1]2=0.268 in place of the normal 
(=1) value.  
In addition, from the diagram of Fig.5-9 (or from Eq.5.29) we get for I1 
=2.5 and I2=1.96, the phase variance as:  
s2f½I1,I2 =(p2/3) 0.05, 
a value substantially less than the unconditioned (=1) value and of the 
‘free’ value (=0.32 from Fig.5-9). 

P5-8 Consider a point, in a dark speckle, having 0.2 times the average 
intensity. What is the average intensity of a nearby point, correlated to the 
starting one with m=0.8 ? How about the phase variance ?  

Answ.: Using the diagrams of Fig.5-7 and 5-8 (or, Eqs.5.27) we find: 
I2½I1 = 0.368 (2s2)  and s2

2½I1 =[0.13+1.28 0.36 0.368](2s2)= 0.30(2s2) 
This time, the weak-speckle has a variance a little bit larger than the normal 
field, s2

2½I1 /[I2½I1]2=2.21 in place of the normal (=1) value.  
In addition, from the diagram of Fig.5-9 (or from Eq.5.29) we get for I1 
=0.2 and I2=0.368, the phase variance as:  
s2f½I1,I2 =(p2/3) 0.45, 
a value less than the unconditioned (=1) value, but larger than the ‘free’ 
value (=0.32 from Fig.5-9). 

P5-9 An interferometer works on a diffuse target to make a measurement 
of displacement. Let the spot size be, like in Probl.P5-1 D=5 mm, and 
assume a distance of 50-cm, and a wavelength l=633 nm. Calculate the 
amount of: (i) longitudinal displacement, (ii) transversal displacement; 
(iii) spot shift on the target; (iv) detector aperture that are allowed for a 1-
l (or 2p) phase error each. 

Answ.: With the data, from Probl.P5-1 we get st =0.063 mm and sl=12.7 
mm, and from Eq.5.35, the allowed displacement is D=0.063mm and 12.7 
mm in the cases (i) and (ii).  
From Sect.5.1.7, we get D=0.063mm also for case (iii).  
Last, using Eq.5.58 and following lines, we get: l=Dz(Ddet/4)2/z2 whence, 
assuming Dz=z/2, we can solve for Ddet= 2z√l/Dz=1000 √0.633 10-3 /250 = 
1.59 mm.   

P5-10 In an interferometer, amplitude fading due to speckle statistics is 
mitigated by operation in space diversity. We use two photodetectors, 
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placed apart of a speckle size, so to have uncorrelated amplitudes. What is 
the probability of fading (and incorrect operation) in this case ?  

Answ.: The probability of having a signal intensity less than háIñ  is: 
P{I≤ h áIñ} = 1-exp-I/áIñ½háIñ  = 1-e-h ≈ h (for small h). 
We may recover the amplitude I= háIñ,  for example by means of an 
automatic gain control, and bring it to a level adequate for processing. 
If one detector has a signal I< háIñ too low, we switch on the second 
detector. Then, the probability of not working is that of having two 
independent intensities smaller than háIñ, or: 
P{I1≤ h áIñ,  I2≤ h áIñ} = {1-exp-I/áIñ½háIñ }2= (1-e-h)2 ≈ h2 (for small h). 
Therefore, if we recover with an AGC amplitudes down to 10-2, the 
probability of not working becomes 10-4, a value very small but not zero.  

P5-11 We are using the extension of Fig.4-16 for the operation of the 
interferometer on a diffuser. The focussing lens receives a collimated beam 
of waist w0 and has a focal F and diameter D. What is the transversal 
dimension of the speckle exiting from the lens?  

Answ.: If the lens receives a beam of size (radius) w0 , it focuses it in a 
spot, on the focal plane, given by: 
wfp= l /pNA = lF/pw0  
where NA is the numerical aperture presented by the lens, as seen at a 
distance F by the beam radius w0.  
As wfp is the radius of the spot re-radiating the field at the diffuser, we can 
calculate the transversal speckle size at the distance z=F as: 
st= l F/2wfp= lF /2(lF/pw0)= (p/2) w0 
Apart from the ≈1 multiplying factor, we can see that the transversal 
speckle size is equal to the (single-mode) impinging beam size.   
The same conclusion holds if we use a collimating telescope to cast the 
beam from the laser output facet onto the remote target. If the target is 
conjugated to the beam waist w0, then the transversal speckle size returning 
from the diffuser is equal to w0, irrespective of magnification.  

P5-12 I don’t like the approximation to 1 of the multiplying factor in 
Probl.5-11. How can you reconcile the results outlined in Probl.5-11 
without the need to introduce this approximation?  

Answ.: The focussed spot of size wfp=lF/pw0 implies that the beam is a 
Gaussian mode distribution, such that the divergence is q=l/pw0, then 
giving the spot size wfp at the distance F (or, wfp=q F). If we consider, as in 
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the derivation of the speckle pattern sizes, a rectangular-distributed 
intensity for the source, the divergence is q=l/D= q=l/2w0 and thus wfp= 
lF/2w0. The transversal speckle size is therefore: 
st= l F/2wfp= lF /2(lF/2w0)= w0 
Conversely, if we assume working with Gaussian beams, we  get q=l/pw0 
and wfp=lF/pw0 as already noted, but the speckle transversal size is no more 
st= l F/2wfp. We shall repeat the calculation of the size (as carried out on 
pages 189-191) for a Gaussian source. Doing so, we obtain the result: 
st= l F/pwfp  
and consequently we get, once again: 
st= l F/pwfp= lF /p(lF/pw0)= w0    

P5-13 How can we ensure that, on the distance swing  Dmax to be covered by 
an interferometer operating on a diffuse-surface target, the speckle phase 
error is minimized ? Specialise to the case  Dmax=1m and calculate the 
attenuation of the returning signal. 

Answ.: To minimize the speckle-phase error, we need to keep the largest 
possible speckle size, or the minimum spot size on the target throughout 
the distance swing.  
Using the external configuration, we collimate the laser beam on the full 
dynamic range z=2Dmax, and get a spot size as (see Eq.2.4): 
w=√(lDmax)  
The longitudinal speckle size then follows as: 
 sl=l(2Dmax/w)2  
and, inserting w in it, turns out to be  sl=4Dmax.  
In this way, we stay inside a single speckle on the full dynamic range. The 
phase error is then sf  ≤2p throughout the measurement range.  
The signal of this last speckle is very weak, however. 
Indeed, if PL is the laser power, half of it is sent in the reference path, and 
the intensity at the target is PL/2p. Thus, the power collected by the receiver 
is (P/2p)p(w/Dmax)2.  
The attenuation respect to the power leaving the laser is accordingly: 
(w/Dmax)2=l/Dmax.  
Using l=1µm and Dmax=1m, we get 
(w/Dmax)2=  1µm / 1m = 10-6 (or, we get a –60 dB loss).   

P5-14 Try to mitigate the attenuation effects found in Probl.5-13 while 
keeping the error at no more than a few l’s on the entire measurement 
range Dmax=1m. 
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Answ.: Assuming a not-so-small diameter of the objective lens, let’s say DL 
=30mm, then the loss is 
pDL

2/4/Dmax
2= 3.14 .900/4 10-6µm =0.7 10-3 (or, it’s a –35 dB loss).   

However, we are faced with a small longitudinal speckle size, which is 
evaluated as:  
sl= l(2Dmax/DL)2= 4mm.  
In a 1-m=Dmax dynamic range, this means we will find 250 speckle passages 
(each with a ≈2p or l error).    

P5-14 In the bright-speckle tracking techniques, we not only oppose 
amplitude fading, but also have a better phase statistics. Is there a simple 
physical reason why a bright speckle should have a smaller phase error 
whereas a dark one have a larger one ?   

Answ.: From the statistical point of view, the diagrams of Fig.5-8 and 5-9 
tell us that large intensity is correlated to small phase variance. 
In addition, we may think of the total speckle field as the result of a 
random-walk addition, in which several small vectors are added with 
random phases (as depicted in Fig.5-2). 
 

 
figure 5-1 

We can represent the addition as in figure 5-1, where the same small phase 
variation is impressed to the individual vectors (with alternate sign), from 
point P to point P+DP.  
Then, we can see that, on a large speckle with the nearly aligned vector-
sum, the phase variations has little effect on the new result, and therefore 
passing from P to P+DP the phase f does change, but not so much. 
On the other hand, on a small speckle with the nearly zero net vector sum, 
the phase variations has a large effect on the new result, and therefore 
phase f appreciably changes passing from P to P+DP. 
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Problems and Questions, Chapter 6 
 

P6-1To design the electronic part of a LDV, we start assuming a 
superposition angle q ranging from 5 to 30 degrees, a wavelength l 
ranging from 0.35 to 0.70 µm. , and want to evaluate To make a speed 
measurement covering the range 1 µm/s to 200m/s, which frequency range 
has to be secured ?   

Answ.: Using the basic formula, 
f = v /2l sinq 
we get 2l sinq = (0.7-1.4)µm (0.1-0.5)= (0.07-0.7)µm 
and therefore 
f = (1µm/s-200m/s) /(0.07-0.7)µm = 14 Hz- 280 MHz 
This range is not so difficult to achieve in a frequency meter following 
front-end detection and signal validation. 

P6-2 Consider an LDV that shall probe a fluid at a 200-mm depth, with a 
q= 14° superposition angle. What is the size of the sampling region? What 
is the number of fringes and the accuracy ? 

Answ.: From the angle of superposition, we get  
tan q = 0.25 = Ros/F.  
As F=200 mm, we get Ros = 50mm, calling for a lens with a diameter Dlens = 
2Ros = 100mm (and with a reasonable F-number F/ =0.5). 
With a laser spot size wL= 1mm on the focusing lens, we obtain a number 
of fringes (Eq.6.4): 50/1 = 
NF =(2/p) Ros/ wL = 0.636 50/1 =31.8    
The accuracy of the single velocity measurement then follows (Eq.6.3) as:  
sv /v =sf /fD=(2p Nf)-1=1/200 =0.5%. 
At the He-Ne wavelength l=0.633µm, the fringe spacing is evaluated as 
D= 0.633µm/2.(sin14°)= 1.30µm,  
and the scale factor of the measurement is: 
R= 2sinq/l= 0.766 Hz/(µm/s) [or, 0.766 kHz/(mm/s) or MHz/(m/s)].  
The focused spot size is wf = (0.633µm) 200/p.1= 40µm. The sizes of the 
sensing region are, from Eqs.6.5 and 6.6:  
wm = wf /0.97= 41µm, and wl = wf /0.24 = 166 µm. 
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As we can see, these central design values provide a good intrinsic 
accuracy and a small sampling volume. The sampling volume is located 
200-mm away, in front of the objective lens of the instrument. 
 

P6-3 Repeat the calculation of Probl.6-2 using a larger distance to the 
sampling spot, say 500 mm. 

Answ.: To sense the fluid farther away, we may use a larger focal length, 
for example F=500mm.  
With this value, the angle of superposition is tan q= 0.1, or q= 5.7°.  
Again using a beam size wL=1mm on the lens, the number of fringes NF is 
unchanged, because it only depends on Ros and wL (not from F), as well as 
the accuracy sv /v=1/2p NF.   
Fringe spacing and scale factor are increased (by the tan-1 ratio) to: 
D=3.16µm, and R= 0.316 Hz/(µm/s).  
The focused spot size changes to: 
wf = (0.633µm) 500/p.1= 100µm,  
and the sizes of the sensing region becomes  
wm = wf  /0.995= 101µm, and wl = wf /0.1= 1000 µm.  
Should this large value of the longitudinal size wl be inconvenient, we can 
always trim it by the a-posteriori validation of fringe (see Sect.6.3.1).     

P6-4 With the LDV data of Probl.6-2, calculate the amplitude of the signal 
supplied by the photo-detector. Assume the detector is forward-looking at 
the sampling region, seeded by 0.25 µm particles, and the solid angle of 
collection by he detector objective be W=0.1 sr. 

Answ.: We take the result (Eq.6.7) of the power budget calculation: 
Iph = s (PL/wl

2) Qextpr2 4p f(qmeas) W   
and substitute in it: s=spectral sensitivity=0.7 A/W, Qext=extinction factor 
=0.3, f(0)=scattering function =0.1sr, W=p Dobj

2/4Fobj
2 =0.1, PL=20 mW, 

getting as a result: 
Iph = s (PL/wl

2) Qextpr2 4p f(qmeas) W  
           = 0.7 (20m/1mm2) 3.14 0.252 µm2 . 12.56.0.1 .0.1 = 0.34 nA 
This is a small but still reasonable value to carry out a low-noise 
measurement of the frequency contained in it. 

P6-5 Our laboratory has a 10.000 class-level of air cleanness. Calculate 
how many particles are found in the sampling volume of the LDV of 
Probl.6-2.   
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Answ.: The sampling volume is given by (page 238) 
V= wl

3 /tan q = 0.1663 mm3 /0.25 = 18.3 10-3 mm3
 

The class-level number expresses the concentration of (≥1µm) particles per 
cubic foot, so the concentration per mm3 is: 
CV = 10.000/(308)3= 0.34.10-3 mm-3 

and the average number of particle per sampling volume follows as: 
N = CV V = 0.34.10-3 mm-3 18.3 10-3 mm3 = 6.26 10-6 

Thus, we need to increase the sampling volume, or only rarely will a 
particle be measured. This implies a long measurement time [unless we 
funnel the particles in a forced flux, thus amplifying the concentration].   

P6-6 Changing the parameters of the LDV in Prob.6-5 appropriately, 
estimate which class of cleanness can be measured by the Doppler 
technique . 

Answ. We can assume an expanded wL=5-mm laser beam, and split it and 
superpose with prisms, so as to keep wl≈wL. With a reasonable q=0.1 we 
get as s superposition volume: 
V= wl

3 /tan q = 53 mm3 /0.1 = 1250 mm3 

Additionally, instead operating the LDV in free air, we funnel it with a 
20:1 ratio of input to output diameters. Thus we obtain a concentration 
factor CF = 400. The average number of particle per sampling volume now 
follows as: 
N = CV CF V = 0.34.10-3 mm-3. 400. 1250 mm3= 170 
Setting at 1 particle the lower limit of the measurement, we get the class 
1000/170= 59 (i.e. better than 100 but not yet 10 or 1).  

P6-7 In the fiberoptics LDV of Fig.6-15 (bottom), isn’t the fiber 
detrimental to the beam wavefront quality needed in the superposition 
region ? 

Answ.: We need a mono-mode fiber for adduction of the beam, of course, 
whereas the returning fiber may be multi-mode as well, because it shall just 
carry the collected power, originating from the particle scattering - thus 
posing no phase requirements. 
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Problems and Questions, Chapter 7 

P7-1 When read as a phase difference, the signal out from an electro-
optical gyro is proportional to the area or R2 (Eq.7.5), whereas when read 
as a frequency difference it is proportional to the radius R (Eq.7.6). Isn’t it 
a contradiction? 

Answ.: No, it isn’t, as we can see starting from Eq.7.6, here written  for 
convenience: 
Dfs= 2WR/l  
We note that frequency f is related to wavenumber k as f=k/c, hence: 
Dfs= Dks/c   
In addition, the phase difference is given by the product of wavenumber 
difference times the perimeter 2pR of the gyro, or: 
DFs= Dks 2pR  
and, inserting the expression written above for Dks we get: 
DFs = cDfs 2pR = c 2WR/l 2pR  
From here we can see that Dfs and Dks are proportional to the radius R (or, 
to the linear size of the gyroscope), whereas DFs is proportional to pR2 (or, 
to the area of the gyroscope) because of the multiplication of Dks by 2pR.  
Thus, for a very large area (or radius) it may be better to read the gyro as 
an external interferometer (with output DFs) whereas a (relatively) small 
area device will be best read as an internal interferometer (with output Dfs). 
This is a possible explanation of why the FOG is an external interferometer 
and the RLG is an internal interferometer.  
 

Q7-2 Why no basic limitations other than the quantum noise are 
considered to influence the gyro performance, like we have done for 
interferometers in Sect.4.4 ?  

Answ.: In principle, all the factors considered in Sect.4.4 shall be 
scrutinized, of course. But, for a normal, central design gyroscope, either 
the FOG or the RLG type, the effects other than quantum noise are 
negligible. 
In fact, we don’t have to care about temporal coherence, because the 
Sagnac or ring interferometer is balanced (App.A2.1), nor about spatial 
coherence, as we work either in a laser cavity supporting one mode, or in a 
mono-mode fiber.  
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Dispersion of the medium and propagation effects are negligible errors in a 
RLG, whereas they will be actually considered as a source of GDV, PMD 
and XPM (Sect.7.5.2.8) in the FOG. 
Thermodynamic phase noise, and Brownian motion effects could be of 
importance, but only if we go to unusually small size for our device. Last, 
speckle errors are absent as we don’t deal with diffuser in the gyro. 

P7-3 Calculate the maximum and minimum angular velocity that can be 
measured at the limit of discretization with a He-Ne RLG gyroscope 
having a radius (or apothem) R=6.33 cm. Find the associated dynamic 
range of measurement. 

Answ. At a radius R, the Sagnac frequency we get is: 
Dfs = 2WR/l 
and the responsivity RF=Dfs/W  is, inserting numbers: 
RF= 2R/l = 2 . 63.3/ 0.633.10-3= 200 kHz/(rad/sec). 
A very slow rotation, say W0=1 deg/h (= 4.7 µrad/s) is translated in a 
frequency difference Dfs = RF W0 = 200 kHz 4.7 µrad = 0.96 Hz.  
Considering the 1-count criterion as the lower limit of measurement set by 
discretization, and taking Tmax =15 minutes as the longest practical 
observation time, we get a minimum readable angular velocity as 
Wmin= W0/Dfs Tmax=1 deg/h /(0.96 . 15 . 60)= 0.00116 deg/h. 
On the other side, the maximum frequency that can be measured without 
entering ambiguity problems is determined by the mode spacing  
Dfsmax = c/2pR = 3.108 /6.28 . 63.3 10-3= 754 MHz. 
At this frequency, there corresponds an angular velocity 
Wmax= Dfsmax/ RF= 754 M/ 0.2 M =1500 rad/sec. 
As we cab see, the maximum angular velocity is a very large one, hardly 
found in a mobile vehicle because it would require unusually large 
accelerations. The ratio of maximum to minimum, that is the dynamic 
range DR is a huge number indeed, perhaps seldom attained but revealing 
the potentiality of the gyroscope: 
DR = Wmax/Wmin = 1500 rad/sec/0.00116 deg/h  
                                                 = 1.3.106/4.7.10-6= 2.76 .1010 

P7-4 Repeat the calculation of the minimum detectable angular velocity 
(Probl.P7-3) considering now the noise limits. Assume an output power 
P=1-mW from the laser, and a mirror reflectivity r1=0.995.  
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Answ. We calculate the equivalent power as P/(1-r1)2 [1+aen
2] (Eq.7.10). 

Being in addition aen≈0 in He-Ne lasers, we get: 
Peq = 1mW/0.0952= 100 mW. 
The RLG area is pR2=3.14 . 63.32.10-6 = 1.26.10-2 m2 

Then, using the diagram of Fig.7-6, and entering with a B=100 Hz band-
width, we get: 
fn= 10-8 rad 
Translating the phase fn into a frequency signal Dfn through the conversion 
factor c/p=c/2pR = 754 MHz (as in Probl.7-3), we get: 
Dfn = (c/p) fn /2p = 754 MHz 10-8rad /6.28 =  1.2 Hz 
As we can see, we have obtained a result about the same lower limit of 
measurable signal calculated in Probl.7-3. In addition, we have: 
NEW = Dfn / RF =1.2 Hz/ 200 kHz/(rad/sec) 
                     = 6 µrad/s = 1.27 deg/h    (B=100 Hz) 
Now, if we go to the minimum reasonable bandwidth of integration, 
Bmin=1/2pT where T (=15 min) is the integration time of Probl.7-3, we get: 
Bmin=1/ 6.28 . 15 . 60 = 0.00018 Hz   
and , corresponding to this bandwidth: 
NEW@Bmin = NEW [ Bmin / B]1/2 

                                               = 1.27 deg/h [0.00018/100]1/2= 0.0017 deg/h. 
Here, we can appreciate the performance currently achieved by real-world 
RLG gyroscopes, by underlining that they actually approach the quantum 
noise-limit. 

P7-5 The He-Ne RLG gyroscope considered above is rigidly mounted (or, 
strapped-down) on a mobile vehicle. We get n=5 counts (or periods) of the 
difference frequency, in a certain unspecified time interval. What can be 
say about the rotation undergone by the vehicle ? 

Answ. By integrating the frequency difference Dfs= 2WR/l  we get: 
n=ò Dfs dt= ò 2WR/l dt= 2R/l Y  
where Y is the (inertial) rotation angle (see also Eq.7.13). This quantity can 
be solved for with the result: 
Y = n/[2R/l]=n/RF 
Letting numbers in it, we obtain the rotation angle as:  

Y =5 / 2.105= 2.5 µrad = 0.53 arc-sec. 
Note that we don’t need to know the time interval in which the counts are 
developed, but just their total final number. Note also that the integration of 
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frequency by a counter does not suffer from low-frequency errors or dc 
cut-offs, a very nice feature of the measurement. 

P7-6 In a He-Ne RLG there is a residual diffusion d=10--4 at one of the 
mirrors. Does it produce locking ? What is the frequency band of signal 
washout ? 

Answ.: We always get locking, no matter how small the coupling 
coefficient is. The coupling due to diffusion is given by Eq.7.16, that is:  
ac =  (l/pw0)√d 
With w0= 0.5 mm and l=0.633 ×10-3 mm, we get:  
ac = (0.633 ×10-3/3.14. 0.5)√10--4=0.4 . 10--5 
Using the condition K<1 in Eq.7.15, we get the minimum frequency 
separation Df0 that prevents locking as:   
Df0< ac(c/p)= (c/p)(l/pw0)√d. 
Hence, we get the value: 
Df0=754 MHz 0.4 .10--5=30.4 Hz, or, translated in equivalent angular 
velocity of locking, we get: 
W0 = Df0/RF= 30.4 Hz /[200 kHz/(r/s)] = 0.15 mr/s = 32 deg/h. 
Note that we have used a very good figure, representative of low-scatter 
mirror, yet the locking range entails a very poor sensor performance, if not 
tackled appropriately. 

P7-7 Calculate the responsivity of a FOG gyroscope made by L=300-m 
fiber wound on a 2R=8-cm diameter coil, when we read the coil with a 
source at l=850 nm.  

Answ. Using Eq.7.5 we get:  
RF= Fs /W = 8pA/lc, 
where we can compute the area as A=NpR2, N being the number of turns, 
given by N=L/2pR. Upon substitution it is A=(L/2pR)pR2= LR/2 and  then: 
RF= 8pA/lc = 4pLR/lc  
                 = 12.56. 300. 4 .10-2/(0.85 .10-6.3 .108)= 0.591 rad/(rad/s) 
This figure is close to unity and is typical. Thus, as a default estimation of 
the signal out of a FOG gyro it is customary to use the RF≈1 rule-of-thumb. 

P7-8 Calculate the amplitude of the signal expected from a FOG (with the 
data as in Probl.7-7) when the rotation is 1 deg/hour. 
Answ.: As a phase signal, recalling that 1 deg/h=4.7 µrad/s, we get:  
Fs= RF W = 0.591 . 4.7 .10-6= 2.78 µrad. 
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If we now consider that the Sagnac interferometer signal swings from 0 to 
a full Vbb in the photodiode preamplifier receiver, where Vbb=10 V is the 
typical large-signal swing, then we get for the output signal: 
Vout= RIph = RIph0[1+ cos (fbias+Fs)] 
and letting ourselves to the most favourable condition, fbias=-p/2, we get: 
Vout= RIph0 sin Fs ≈ RIph0 Fs  = VbbFs 

In conclusion, a Fs= 2.78-µrad signal will show up, on the quiescent 
voltage RIph0, as an amplitude variation of: 
VbbFs= 10 V. 2.78 .10-6 =  27.8 µV, 
a very small value indeed, that is not yet the lower limit we would like to 
approach. 

P7-9 Take into account a fluctuation of 0.1% of the loss of the launch 
coupler, and calculate the error generated in the output signal. 

Answ.: If the beamsplitter is loss-less, the phase shift between transmitted 
Et and reflected Er fields is p/2.  With no lack of generality, we may 
suppose the two components are of equal amplitude, Et=Er=Ein/√2, or that 
R= (Er/Et)2=(Ein/Et)2= 0.5.   
For a generic loss p, the angle between Er and Et is found as [see 
‘Photodetectors’, page 261]: 
ferr= p/2+p/2√R(1-R), where R is the power reflection.  
Taking R=0.5 we get: ferr=p/2+p, or, the angle deviates from p/2 by a 
quantity equal to the loss p. In our case, the deviation is 0.1%=1 mrad. This 
figure is reduced because of the Sagnac configuration, but we take it now 
as a conservative estimate. Letting Fs=0 and fbias= p/2+ferr, the output signal 
fluctuation would be: 
Vbbferr= 10 V .10-3  =10 mV, 
i.e., much larger than the signal considered in previous Problem, and this 
tells us how careful we shall be about sources of inadvertent phase-shifts, 
in the FOG. 

Q7-10 Since the FOG works on the Sagnac configuration, a balanced 
interferometer, the phase shift ferr supposed in Probl.7-9 should actually be 
cancelled out when the beating of the two counter-propagating beams is 
considered. How do you comment about it ?  
Answ.: Indeed, the error generated is not the total ferr, but the difference 
ferr(t)-ferr(T-t) where T=2pNR/c is the time delay of propagation through the 
coil (see Eq.7.23).  
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To get further insight, we can assume that ferr(t) is a random process with 
white spectral density up to a corner frequency ff, characteristic of the 
device. Then, the actual error becomes:  
sf2= sf0

2
 [1-sinc2 2pfT]  

where is sf the rms error, sf0
2

 its low-frequency value, and sinc(..)= 
sin(..)/(..)  is the function summing up the suppression effect due to the 
delayed subtraction. 
As a consequence of the above consideration, the dc (or zero frequency) 
error is suppressed, the cancellation is partial for intermediate frequency up 
to 1/2pT, and there is no cancellation for 1/2pT <f< ff.  

Q7-11 Can any other waveform different from the sinusoidal be employed 
to drive the dither excitation (Fig.7-13 and 14) of the piezo actuator to 
unlock the gyro ?  
Answ.: Several options other than the sinusoidal can be considered. For 
example, a sinusoid plus a square wave can superpose a pedestal to the 
half-periods indicated in Fig.7-14, resulting in a better linearity of the 
dithered response. However, the optimum waveform depends on the 
locking range, which on its turn is not that stable in time. So, after all, no 
sophistication of the dither waveform is worth the added complication.   

P7-12Would you prefer a gyroscope tagged with a noise of 0.01 deg/h or 
one with 0.01 deg/√h  ?  

Answ.: The specifications are different. The former is the rms error or 
MDW of the device, whereas the latter stands for the spectral power 
density of the fluctuation, SW. 
As the relation between the two (see Eqs.7.20) is:  
MDW= SW/√T + WZB  
where WZB is the zero-bias error. In the comparison, it is clear that it is 
better to have the former figure (0.01 deg/h) provided T<1-h, because the 
latter figure will become increased, when divided by a number <1 to get 
the total MDW. 

P7-13 In the right-hand side of Fig.7-17, the levelling down to nearly 
constant of the diagrams is due to the zero-bias error coming into play or 
to other reason ? 
Answ.: May be due to WZB, but also to non-white (that is, 1/f or 1/f2) noise 
components. No general rule exists to tell one case from another.    
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P7-14 We read the FOG gyro of Probl.7-7 (L=300-m, 2R=8-cm, l=850 
nm.) with the open-loop configuration based on a PZT phase modulator. 
What is the optimum value of the frequency modulation? What is the 
typical drive voltage required by the PZT ? What is the signal amplitude 
obtained at the output?  

Answ.: We use the criterion of maximising the signal output sinFS (page 
280): 
 2J1(F0) = max 
The maximum is found at F0=1.8, and recalling (Eq.7.25) that: 
F0= 2Fm0 sin wmT/2 
we see that we can actually trade frequency (term sin wmT/2) for drive 
amplitude (term Fm0) of the PZT phase modulator. However, if we take full 
advantage of the first term, we have to maximise the sine dependence 
choosing  
wmT/2= p/2,  or, solving for frequency:  fm =1/2T  
Using T=nL/c in this expression, we get: 
fm=1/2T= c/2nL = 3.108 /2. 1.5. 300= 333 kHz, a very reasonable value. 
Now, returning back to F0=2Fm0 sinwmT/2, having sinwmT/2=1, we need a 
phase amplitude  
Fm0 =F0/2 sinwmT/2=1.8/2 = 0.9 rad. 
This is a very reasonable value, too.  
We can calculate the drive voltage required for a phaseshift Fm0=0.9 rad 
from the data published in literature (page 282). A typical relationship to 
voltage is Fm0=kNVdr, where N is the number of turns wound on the PZT 
cylinder, and k is a conversion coefficient depending on PZT material and 
geometry, but that usually is in the range 0.05..0.2 rad/V. Assuming: 
k=0.1 and N=5 we get the drive voltage amplitude as: 
Vdr =Fm0/kN = 0.9/0.5 = 1.8 Volt 
[Note: if we wish so, we can now trade amplitude Vdr for frequency fm 
leaving unchanged the other quantities, for example: Vdr =1.8. 10=18 V and 
fm=333/10=33.3 kHz. This allows us to lower fm below the high-frequency 
cutoff of the PZT]. 
The signal output (see Eq.7.27) is now: 
Iph/ Iph0 = 1+[J0(F0) + 2 J2(F0) cos 2wmt + hoh] cosFS + 
                   + 2 [J1(F0) cos wmt +hoh] sinFS 

where hoh =higher-order harmonics. So, besides the dc component ≈1+ 
J0(1.8)=1.34, there is a minor 2 J2(1.8)=0.62 second-harmonic component in 
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cosFS, and then the term of interest, a sinFS≈FS signal of amplitude 2 
J1(1.8)=1.16. 
If the detected signal is sent to a front-end amplifier with (Probl.7-8) Vbb= R 
Iph0 =10V, we would get: 
Vout=R Iph= Vbb2 J1(F0) [cos wmt] sinFS ≈ 11.6 FS 
and, for W=1 deg/h  whence FS = 2.78 µrad, the amplitude of the cos wmt 
carrier is 
Vout=11.6. 2.78 µrad =32.2 µV, 
a value not so different from the amplitude estimated in Probl.7-8. 

P7-15Should we wish to get the cosF in addition to the sinF signal in the 
FOG external configuration, how large shall we expect is it ? 

Answ.: From previous Problem, we have in the output signal Iph a second-
harmonic component cos 2wmt with amplitude: =0.3/100 
Vout= R Iph = Vbb2 J2(F0) [cos 2wmt ] cosFS 

                              =10. 0.62. [cos 2wmt ] cosF S 
The amplitude of the cosF S-modulated second-harmonic component is 
therefore 10. 0.62=6.2 V, not so different from the amplitude of the 
fundamental component.  

P7-16 How can we derive the datum of CW/CCW mode coupling due to 
fiber backscattering (page 285) at -55 dB/m, typically?  

Answ.: To calculate this figure, we start considering the attenuation of a 
good communication or FOS fiber, typically a=3dB/km (or, a factor 2 for 
L=1-km) at l=850 nm. 
Inserting in P=P0

.10-aL/10 we get: Log102=a(1-km)/10 whence a=0.3/100 = 
0.003 m-1. To convert to Neper units, we compare with Lambert-Beer law 
written as P=P0

 e-a’L =10-0.43a’L and find 0.43a’=a/10, or a’=a/4.3 =0.00069 m-

1. As in general we have a=a+s (App.A3.1), and near a minimum of 
attenuation we may expect s=0.8 a, we get a scattering coefficient:  
s=0.00055 m-1. The scattered power is radiated isotropic in space according 
to Lambert cosine law, on 2p sterad. The capture angle for backscattering 
is Wbsc= p(l/pw0)2 where w0 is the fiber core radius. Taking w0=2.5µm and 
l=0.85µm, we get the fraction of collected backscatter light as:  
Wbsc/2p=0.5(l/pw0)2= 0.5(0.85/3.14.2.5) 2=0.5(0.108)2=5.8.10-3, 
Now, the total coupling due to backscattering is given by: 
Atot =a’ Wbsc/2p=0.00055. 5.8.10-3 m-1=3.2.10-6 m-1  
This is equivalent to say that the Atot is 10Log103.2.10-6=-55 dB/m 
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P7-17 Estimate the contribution, to the zero-bias error, of the Rayleigh 
backscattering from the fiber in a FOG gyro, when using a laser source 
with linewidth Dn=10 MHz and when using a SLED with spectral width 
Dl=50 nm.  

Answ.: On the 200-m=L length of the fiber, the strength of  the Rayleigh 
backscattering amounts to: 
AL = Atot +10Log10L/(1-m) =-55 +23= -32 dB. In power, this means a 
backscattered fraction given by 10-Atot=10-32/10=0.63.10-3. If the coherence 
length were larger than L=200m, this power will sum coherently with the 
useful signal, and the angle of wandering (see Fig.7-22) would be: 
fbs=√AL=√(0.63.10-3)= 25 mrad, 
an enormous error, absolutely unacceptable. 
Actually, using the laser diode with Dn=10 MHz, we get a coherence 
length Lc=c/Dn=3.108/10 MHz= 30 m, 
and in a first approximation can state that only a fraction Lc/L of the total 
backscattering is added coherently. Then, we get  
AL =0.63.10-3.30/200= 0.95.10-4  and  the phase error 
fbs=√AL= 9.7 mrad  (LD) still a very large, intolerable value. 
Considering the SLED, we get for the coherence length: 
Lc=l2/Dl= 0.852/0.05= 14.4 µm. Now the coherent field fraction is 
AL =0.63.10-3.14.4.10-6 /200= 4.5.10-11 and fbs=√AL= 6.7 µrad  (SLED). 
So, with the SLED, we have slashed down the phase error due to 
backscatter to a reasonable low value. 
 
P7-18 An Integrated Optics FOG is made up with N=10 turns of 4-cm=R 
radius  waveguide on a SOS substrate. What is the responsivity of the FOG 
? What the expected phase and NEW performance ? 

Answ.: We go back to Eq.7.5 or Probl;7-7 and write: 
RF= 8pA/lc = 8p2NR2/lc  
                 = 78.87. 10. 42 .10-4/(0.85 .10-6.3 .108)= 0.005 rad/(rad/s) 
a value much smaller than that [0.591 rad/(rad/s)] of a typical fiber FOG. 
Assuming now the same power available at the detector, that is P=1mW, 
from the diagram of Fig.7-6 we can find, at B=100Hz: 
fn=0.1 µrad.   
This is a relatively minute angle, not very easily resolved. Anyway, 
assuming to detect it, the corresponding noise-equivalent angular velocity 
is found as:    



 75 

NEW = fn/ RF = 0.1 .10-6/0.005 = 20 µrad/s = 4.2 deg/hour. 
This example is of more general validity than the numbers tell. Indeed, 
reducing the responsivity implies a reduction of performances, because 
what is relatively independent from the chosen configuration is the 
minimum detectable phase, typically 0.1 to 1 µrad. 
 
Q7-19 Number out the advantages of the closed-loop, digital readout FOG 
compared to the open-loop configuration. Consider: NEDW, linearity, 
dynamic range, signal swing of the electronic circuit, and bandwidth.  

Answ.: The main advantage of CL-FOG (closed-loop) compared to OL-
FOG (open-loop) is the output format, digital instead of analogue. When  
lot of bits are involved (the FOG readily provides a dynamic range of 6 
decades, or 20 bit) the digital readout removes all the errors and limitations 
faced with the A/D converter.  
Second, closed loop operation provides the best linearity, because even at 
large signals that would entail a sinFS distortion, working dynamically at 
FS ≈0 cancels out the error.  
The signal swing in the circuits is the same as for an open-loop, so is the 
voltage swing feeding the PZT. Bandwidth required to preserve the 
waveform is higher than the FS signal bandwidth, because of the Df steps 
making up the digital ramp. Bandwidth of the FS signal is the same in the 
two cases.  
 
P7-20 A MEMS gyroscope has a mass m=2µg and the resonant frequency 
is f0=10 kHz. Find the spring constant and how large is the comb 
displacement undergone by application of a constant force F=1µN.  
Assuming then a readout comb made by 60 fingers, 2x300 µm in area and 
2 µm in gap, calculate the capacitance variation obtained. Last, calculate 
the Coriolis force induced by a W=1rad/s angular velocity. 

Answ.: The spring constant is solved out from w0=√k/m as: 
k=m w0

2= 2 .10-9 . (6.28 .104)2= 7.9 N/m 
The comb displacement occurring when a constant force F is applied is: 
x= F/k= 10-6/7.9 =0.126 µm. 
The capacitance of the comb structure is: 
C= e0 N A/w = 8.86 .10-14 60 . (600.10-4)2/2 .10-4 = 0.159 pF 
Now we can apply the virtual work principle to the comb, when they move 
from a separation w to a new separation w+dw, and equate the change of 
electrostatic energy to the elemental work performed F dw: 
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dL= (1/2) dCV2 = -F dw 
Differentiating C we obtain:  dC= -e0NA/w2 dw=-(C/w)dw, and: 
(1/2) (C/w)dw V2= F dw, whence 
F = (C/2w) V2 
Now, let’s take V=10 V as the bias and find: 
F= (0.159 pF/2 .10-4) 100= 0.08.10-6 N, whence a displacement Dz: 
Dz = 0.08 .10-6 N/7.9 = 0.01 µN,  
a value that is about 1% of the constant force assumed above. 
Using Eq.7.35 we get the Coriolis force as: 
FC= 2m W v. 
To find the excitation velocity v, let us assume a Q factor Q=10. Then the 
velocity due to a force applied at the resonance frequency is calculated as: 
v=w0Q F/k = 6.28 .104.10.10-6/7.9= 7.91.10-2 m/s, and accordingly 
FC= 2m W v = 2 .2 .10-9 . 1. 7.91.10-2 = 0.32 nN 
This is barely measurable, being about a few percent of the force between 
the combs. 
 
 

Problems and Questions, Chapter 8 
 
Q8-1 How would you classify a hypothetical optical-fiber-sensor (OFS) for 
SARS detection, based on the colour change induced in an organic tracer 
cemented to the fiber end face ?  

Answ.: This sensor would be a kind of optrode. As a OFS, it would be 
classified as extrinsic, indirect sensor, of the intensity-readout category. 
 
P8-2How can I design a balance for weighting small (<500g) weights, 
based on an intensity readout OFS ? 

Answ.: We can do that with two fiber pigtails, whose end faces are 
separated by about one fiber diameter (so that z/2a≈1 in Fig.8-6), and 
bearing a helical spring slipped axially upon the fibers. Eventually, we take 
advantage of sleeves (or ferules) to cement the spring and distribute the 
load along the fiber length.  
When a weight is applied to the arrangement laid vertically, the spring 
pulls closer the fiber end faces. The signal attenuation is given by the 
diagram of Fig.8-6, where the quiescent point is chosen according to the 
desired range and linearity. As the diagram is nearly logarithmic versus the 
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displacement, a log-attenuation circuit will bring to about linear the 
measurement. 

P8-3 Can additional measurand other than force be measured with the 
arrangement of fiber misalignment ?  

Answ.: In addition to force and pressure (Fig.8-7) we can measure angular 
displacement and torque, by taking advantage of the angle misalignment 
loss A (Fig.8-6 bottom left).  Mounting two fiber pigtails on a rotary stage, 
one pigtail being fixed to the stage and the other free of moving, we get an 
A=A(a) dependence from loss [seen in (Fig.8-6 to be almost quadratic]. 
The torque sensor is implemented in a similar way, by adding a spiral 
spring to the fixture holding the fiber. 

P8-4 Can the intensity readout OFS considered in Probl.8-1 and 8-2 be 
implemented by a single-ended access, using just one fiber pigtail ?  

Answ.: Yes, it can be done using a mirror in place of the second fiber 
pigtail end face, and the result looks like the arrangement depicted in Fig.8-
8 (right) for the pressure sensor.  
At the expense of an increased part count (we need an input/output 
coupler) and some extra loss (6dB for the go-and-return passage through 
the coupler), we get a more compact and easily deployed sensor. 

Q8-5 Two common problems of intensity-readout OFS are the lack of a 
reference and the poor linearity. How can we mitigate them with a 
minimum of added complexity? 

Answ.: To be able adding a reference, we need getting a separate ‘channel’ 
of measurement, that is, another variable or ‘degree of freedom’ of the 
optical measurand. 
Perhaps the easiest and most frequently available degree of freedom is 
wavelength. We can reference an amplitude or intensity measurement by 
taking advantage of the wavelength-dependence of the measurand, let’s 
say, strong at l1, and weak or vanishing at l2. If we find such a 
circumstance, then the interval around at l1 will be the measurement 
channel, and the interval around at l2 will be the reference channel. A 
subtractor stage will perform the referencing, better if preceded by a log-
converter stage - so that the log-and-difference operation amounts to make 
the ratio of measurement to reference. 
About linearity, a common cure is already performed with the log 
conversion as far as the optical readout is attenuation proportional to the 
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physical measurand. In other cases, we have to correct the readout with a 
look-up table. 
Examples of development of the above concepts are: the temperature OFS 
(Fig.8-10), the Nd-fiber high-temperature OFS (Fig.8-11), and the pH-
measurement optrode (Fig.8-14). 

P8-6 How large is the circular-birefringence rotation induced in a fiber 
subjected to a 1-Ampere-turn magnetic field intensity? 

Answ.: Assuming l=850 nm and a normal silica fiber, we have (see Table 
6-1) for the Verdet constant: 
V= 3 µrad/A 
then, the angle of rotation of a linear SOP (state of polarization), induced 
by a magnetic field along a piece of fiber of length L is (Eq.8.3): 
Y= V ò  H . dl = VHL 
and when we consider a wire carrying a current I, linked to the fiber with a 
number of turns N, we get: 
Y= VNI   
Now, if N=1 and I = 1 Amp, we get a rotation Y= 3 µrad 
This is a quite small value, and explains why the magneto-optical current 
sensor is difficult to implement, at least when a sensitivity comparable to 
that of usual electrical instruments. 
Indeed, if we use the setup of Fig.8-16 to read the birefringence, the 
amplitude of the output signal is sin2Y ≈2Y in power. Thus, we are going 
to read a power ≈2Y= 6 .10-6 of the input power P0, a minute signal that we 
should check from the point of view of noise. 

P8-7 How can we increase the small value of the rotation angle of Probl. 
P8-6 ? 

Answ.: We can link more turns Nf of fiber to the conductor carrying the 
current, as well as more turns Nw of wire to the fiber. Doing so, we get: 
Ymultiturns = Nf Nw Y1-turn  
As an example, for 30 wire turns linked to 30 fiber turns, we get 
Ymultiturns = 30.30. 3 µrad= 2.7 mrad 
still a small value but much easier to be measured. 
Another possibility is using a YIG crystal (yttrium iron garnet), which has 
a Verdet constant ≈103 time that of the silica. In this case, however, we 
have Nf =1 because we can’t wind the crystal, and additionally, the OFS 
becomes of the external type.   
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P8-8 Can we sense a magnetic field produced by a normal magnet, say 
supplying B=1000 Gauss, with the following: (i) a short piece (10-cm) of 
fiber; (ii) a coil of N=100, 1-cm dia. fiber turns; (iii) a 1-cm long YIG 
garnet ?   

Answ.: We recall that an induction of B=1000 Gauss corresponds to a 
magnetic field intensity of H= 1000 Oersted, and that being 1 Oe = 80 
A/m, we get H=80 000 A/m= 800 A/cm. 
Now, using a 1-cm fiber we get 
Y= V ò  H.dl = VHL =3.10-6 800 .10= 24 mrad, a small but measurable angle; 
in case (ii) we get 
Y= V ò  H.dl =0, because the liner integral of the magnetic field H is zero 
on the closed path of the coil (unless H is produced by a current and the 
coil is linked to the wire); and in the case (iii): 
Y= VHL =3.10-3 800 .1= 2.4 rad, a large value, that tells us how the YIG can 
be  useful indeed in magnetic field measurements. 

P8-9 Calculate the minimum current we are able to measure (with a 
S/N=1) using a fiber coil linked to the current wire, with Nf =25 turns, 
using an optical power P0=1mW and a measurement Bandwidth B=10 Hz  

Answ.: Entering in Fig.8-21 (or using Eq.8.7) we can read the NEI (noise 
equivalent current) and the corresponding noise-rotation angle  Yn at 100 
Hz and 1 mW (or 1 mA). To read our data, we shall only mind the 
correction factor, respect to the N=50 case of the diagram. For Nf =25, we 
shall multiply by 2 both NEI and noise Yn. Doing so, we obtain: 
NEI = 2 mA,  Yn= 4 .10-7  rad 
If we were able to resolve such a small angle (Y= 0.4 µrad), a milliAmp 
capability of current OFS would be obtained. Unfortunately, several 
disturbing effects (like in the FOG) impede us from attaining the quantum 
limit of performance.  

P8-10 A 1-cm long fiber is loaded with a small weight F=0.01 N. Knowing 
that the photoelastic birefringence coefficient is q=0.3 rad/N, calculate the 
signal amplitude that is read with the basic scheme (Fig.8-23) using a 1-
mW power.  

Answ.: The coefficient q comes from the analysis of the elasto-optical 
deformation of the fiber, with the final result expressed as: 
DY lin = 2n3(1+n)E-1(p11- p12) F/rl 
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where E and n are the Young’s and Poisson’s moduli, n is the effective 
index of refraction and the p’s are the strain elasto-optical coefficients 
(p11=0.121 and p12=0.270 in silica fiber). Inserting the values, we get the 
phase as DYlin= 0.3 rad/N. 
Now, in the scheme of the linear birefringence readout (Fig.8-23 and 24) 
we get an output signal  
sin2Y ≈2Y , 
or, we are going to read a power fraction of the initial power P0: 
≈2Y= 0.3 rad/N . 0.01 N= 3 mrad  
This is about 0.3% of the input power, an easily detected quantity. Note 
that 0.01 N is about 1gram in weight. 

P8-11 Can we develop an OFS hydrophone sensitive enough to beat the 
human hearing ?   

Answ.: We can assume to employ a reasonable length of fiber, say L=5 m, 
wound on a coil as 82 turns of 2pR= 6.28 cm. A coated monomode fiber 
may have a sensitivity, to isotropic hydrostatic pressure (see p.347): 
sac= 300 µrad/Pa .m 
whence an optical phase developed per unit pressure: 
Df= sacL = 300 µ.5= 1.5 mrad/Pa. 
Now, the threshold of human hearing in normal working conditions is 
about +10 dBa (@ 3kHz) respect to the 0-dBa level, equivalent to a 
pressure of 10. 2.10-5 Pa = 2.10-4 Pa (see also page 348). Thus, at the acoustic 
threshold we get a typical phase: 
Df= 1.5 mrad 2.10-4 = 0.3.10-7 rad. 
This is a very small value that amounts to have, on a 1mA average value 
(detected from a ≈1mW power), a minute signal current, specifically i≈ 
0.3.10-7 rad. 1mA= 30 pA.  
But, as this current is alternate, not continuous, and on a moderate (audio) 
bandwidth, so it is much easier to amplify and detect it down to the level of 
quantum noise. Indeed, the quantum noise limit associated to 1mA, on a 1-
Hz bandwidth, is: 
in= (2eIB)1/2= (2.1.6.10-19.10-3)1/2= 1.8.10-11=18 pA. 
So, at least from this very preliminary evaluation, our OFS hydrophone can 
indeed equal or surpass the performance of the human ear.  
 
 
 


